

US009249216B2

(12) United States Patent

Fernandez-Salas et al.

(10) Patent No.:

US 9,249,216 B2

(45) **Date of Patent:**

Feb. 2, 2016

(54) IMMUNO-BASED BOTULINUM TOXIN SEROTYPE A ACTIVITY ASSAYS

(75)	Inventors:	Ester	Fernandez-Salas,	Fullerton,	CA
------	------------	-------	------------------	------------	----

(US); Joanne Wang, Irvine, CA (US); Patton Garay, Long Beach, CA (US); Lina S. Wong, Irvine, CA (US); D. Diane Hodges, Tustin, CA (US); Kei Roger Aoki, Coto de Caza, CA (US)

- (73) Assignee: Allergan, Inc., Irvine, CA (US)
- (*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 489 days.

- (21) Appl. No.: 13/475,553
- (22) Filed: May 18, 2012

(65) **Prior Publication Data**

US 2012/0225436 A1 S

Sep. 6, 2012

Related U.S. Application Data

- (62) Division of application No. 12/403,531, filed on Mar. 13, 2009, now Pat. No. 8,198,034.
- (60) Provisional application No. 61/036,723, filed on Mar. 14, 2008.

(51) Int. Cl.

 G01N 33/53
 (2006.01)

 C07K 16/12
 (2006.01)

 G01N 33/68
 (2006.01)

 G01N 33/566
 (2006.01)

 C12Q 1/37
 (2006.01)

 G01N 33/50
 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

5,962,637	A	10/1999	Shone et al.
6,043,042	A	3/2000	Shone et al.
6,337,386	B1	1/2002	Shone et al.
6,673,215	B2	1/2004	DeWent
7,183,066	B2	2/2007	Fernandez-Salas
7,208,285	B2	4/2007	Steward et al.
7,223,577	B2	5/2007	Steward
7,332,567	B2	2/2008	Steward et al.
7,374,896	B2	5/2008	Steward et al.
7,399,607	B2	7/2008	Williams et al.
7,419,676	B2	9/2008	Dolly
7,485,654	B2	2/2009	Takayama
7,495,069	B2	2/2009	Steward et al.

7,514,088 B2	4/2009	Steward
7,598,027 B2	10/2009	Fernandez-Salas
7,632,655 B2	12/2009	Williams
7,635,574 B2	12/2009	Williams
7,638,294 B2	12/2009	Williams
7,645,570 B2	1/2010	Fernandez-Salas
7,674,601 B2	3/2010	Williams
7,678,550 B1	3/2010	Steward
7,709,608 B2	5/2010	Steward
7,718,766 B2	5/2010	Steward
7,749,759 B2	7/2010	Fernandez-Salas
7,838,260 B2	11/2010	Steward
7,846,722 B2	12/2010	Williams
7,998,749 B2	8/2011	Gilmore
8,022,172 B2	9/2011	Williams
8,067,231 B2	11/2011	Fernandez-Salas
8,124,357 B2	2/2012	Fernandez-Salas
8,187,834 B2	5/2012	Foster
8,198,034 B2	6/2012	Fernandez-Salas et al.
8,263,747 B2	9/2012	Marks
8,299,218 B2	10/2012	Marks
8,361,789 B2	1/2013	Zhu et al.
8,455,203 B2	6/2013	Wang et al.
8,455,247 B2	6/2013	Zhu et al.
8,501,469 B2	8/2013	Zhu et al.
8,507,271 B2	8/2013	Zhu et al.
2004/0220386 A1	11/2004	Steward

(Continued) FOREIGN PATENT DOCUMENTS

WO WO 95/33850 12/1995 WO WO 01/60347 8/2001 (Continued)

OTHER PUBLICATIONS

Razai et al. (J. Mol. Biol. 2005; 351: 158-169).* Chiao et al. (Hybridoma. 2008; 27 (1): 43-7).* Ekong et al. (Microbiology. 1997; 143: 3337-47).* Stahl et al. (J. Biomol. Screen. Apr. 2007; 12 (3): 370-7).* Dolimbek et al. (Mol. Immunol. Feb. 2007; 44 (5): 1029-41).* U.S. Appl. No. 12/203,531, filed Mar. 13, 2009, Fernandez-Salas. Williamson, L.C., et al., Clostridial Neurotoxins and Substrate Proteolysis in Intact Neurons, J. Biol. Chem. 271(13): 7694-7699 (1996)

Adler, et al.: The Current and Scientific and Legal Status of Alternative Methods to the LD50 Test for Botulinum Neurotoxin Potency Testing, ATLA 38: 315-330 (2010).

(Continued)

Primary Examiner — Stephen Rawlings (74) Attorney, Agent, or Firm — Brigitte C. Phan; Ted A. Chan

(57) ABSTRACT

The present specification discloses SNAP-25 compositions, methods of making $\alpha\textsc{-}SNAP\textsc{-}25$ antibodies that bind an epitope comprising a carboxyl-terminus at the P_1 residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product, $\alpha\textsc{-}SNAP\textsc{-}25$ antibodies that bind an epitope comprising a carboxyl-terminus at the P_1 residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product, methods of detecting BoNT/A activity, and methods of detecting neutralizing $\alpha\textsc{-}BoNT/A$ antibodies.

4 Claims, 11 Drawing Sheets

(56) References Cited

U.S. PATENT DOCUMENTS

2006/0252765	$\mathbf{A}1$	11/2006	Takayama et al.
2007/0122858	A1	5/2007	Fernandez-Salas
2007/0243565	$\mathbf{A}1$	10/2007	Williams et al.
2007/0275477	A1	11/2007	Gilmore et al.
2008/0064054	A1	3/2008	Fernandez-Salas
2008/0096248	$\mathbf{A}1$	4/2008	Steward
2008/0160561	A1	7/2008	Fernandez-Salas et al.
2008/0161543	A1	7/2008	Steward
2008/0166739	A1	7/2008	Steward et al.
2008/0171348	A1	7/2008	Steward et al.
2008/0176249	A1	7/2008	Steward et al.
2008/0176336	A1	7/2008	Steward et al.
2008/0241881	A1	10/2008	Steward
2009/0042231	$\mathbf{A1}$	2/2009	Steward
2009/0053746	A1	2/2009	Steward et al.
2009/0191583	A1	7/2009	Fernandez-Salas et al.
2010/0203559	A1	8/2010	Ester et al.
2010/0233741	A1	9/2010	Wang
2010/0280222	A1	11/2010	Steward
2012/0122128	A1	5/2012	Fernandez-Salas
2012/0225436	A1	9/2012	Fernandez-Salas

FOREIGN PATENT DOCUMENTS

WO	03-080672	10/2003
WO	WO 2006/042149	4/2006
WO	WO 2009/039356	3/2009
WO	WO 2009/114748	9/2009
WO	2010-105234	9/2010
WO	2010-105236	9/2010

OTHER PUBLICATIONS

Capek, et al.: Sensing the Deadliest Toxin: Technologies for Botulinum Detection, Toxins, 2: 24-53; doi: 10.3390/toxins2010024(2010).

Dong, et al.: Using Fluorescent Sensors to Detect Botulinum Neurotoxin Activity in Vitro and in Living Cells, PNAS, vol. 101, No. 41, pp. 14701-14706 (2004).

Fernandez-Salas, et al.: Is the Light Chain Subcellular Localization an Important Factor in Botulinum Toxin Duration of Action, Movement Disorders; vol. 19, Sppl. 8, 2004, pp. S23-S34 (2004).

Fernandez-Salas, et al.: Plasma Membrane Localization Signals in the Light Chain of Botulinum Neurotoxin, PNAS, vol. 101, No. 9, pp. 3208-3213 (2004).

Gaynor, et al.: Presumed Activation of Herpetic Keratouveitis After Argon Laser Peripheral Iridotomy, American Journal of Ophthalmology, vol. 130, No. 5 (2000).

Grate, et al.: Advances in Assays and Analytical Approaches for Botulinum-Toxin Detection, Trends in Analytical Chemistry, vol. 29, No. 10, pp. 1137-1156(2010).

Guan, et al.: Regulatory Prespective on Development of Non-Animal Based Potency Assays for Assessment of BoNT Therapeutics, FDA; Oct. 2009.

Hakami, et al.: Gaining Ground: Assays for Therapeutics Against Botulinum Neruotoxin; Trends in Microbiology; vol. 18, No. 4, pp. 164-172 (2010).

Sesardic, et al.: Botulinum Toxin: Applying the 3Rs to Product Potency Testing; National Centre for the Replacement, Refinement and Reduction of Animal in Research; NC3Rs #15 Botulinum Toxin; Applying the 3Rs (Mar. 2009).

PCT, Written Opinion of the International Searching Authority (PCT/US2009/037046); Mar. 3, 2009.

Shimazaki, Y., et al., Phosphorylation of 25-kDa Synaptosome-Associated Protein, J. Biol. Chem. 271(24): 14548-14533 (1996).

Schulte-Baukloh, H., et al., Persistence of the Synaptosomal-Associated Protein-25 Cleavage Product After Intradetrusor Botulinum Toxin A Injections in Patients with Myelomeningocele Showing an Inadequate Response to Treatment, BJU Int. 100(5):1075-1080 (2007).

Rasooly R. and Do, P.M., Development of an In Vitro Assay as an Alternative to the Mouse Bioassay for *Clostridium botulinum* Neurotoxin Type A, App. Environ. Microbiol. 74(14): 4309-4313 (2008).

Nabokina, S., et al., Intracellular Location of SNAP-25 in Human Neutrophils, Biochem Biophys. Res. Comm. 239: 592-597 (1997). Marini, P., et al., SiMa, a New Neuroblastoma Cell Line Combining Poor Prognostic Cytogenetic Markers with High Adrenergic Differ-

entiation, Cancer Genet. Cytogenet. 112: 161-164 (1999). Marconi, S., et al., A protein-chip Membrane-Capture Assay for Botulinum Neurotoxin Activity, Toxicol. App. Pharmacol. 233: 439-446 (2008).

Hallis, B., et al., Development of Novel Assays for Botulinum Type A and B Neurotoxins Based on Their Endopeptidase Activities, J. Clin. Microbiol 34(8): 1934-1938 (1996).

Jones R.G.A., et al., Development of Improved SNAP-25 Endopeptidase Immunoassays for Botulinum Type A and E Toxins, J. Immunol. Methods 329: 92-101 (2008).

Garcia-Rodriguez, C., et al., Molecular Evolution of Antibody Cross-Reactivity for Two Subtypes of Type A Botulinum Neurotoxin, Nature Bioltech 25(1): 107-116 (2007).

Foran, P., et al., Botulinum Neurotoxin C1 Cleaves Both Syntaxin and SNAP-25 in Intact and Permeabilized Chromaffin Cells: Correlation With Its Blockade of Catecholamine Release, Biochemistry 35: 2630-2636 (1996).

Boyd, R.S., et al., The Effect of Botulinum Neurotoxins on the Release of Insulin from the Insulinoma Cell Lines HIT-5 and RINm5F, J. Biol. Chem. 270(31): 18216-18218 (1995).

Amersdorfer, P., et al., Molecular Characterization of Murine Humoral Immune Response to Botulinum Neurotoxin Type A Binding Domain as Assessed by Using Phage Antibody Libraries, Infect. Immun. 65(9): 3743-3752 (1997).

Yowler et al. (J. Biol. Chem. Sep. 6, 2002; 277 (36): 32815-9).

Vadakkanchery et al. (J. Neurochem. 1999; 72: 327-37).

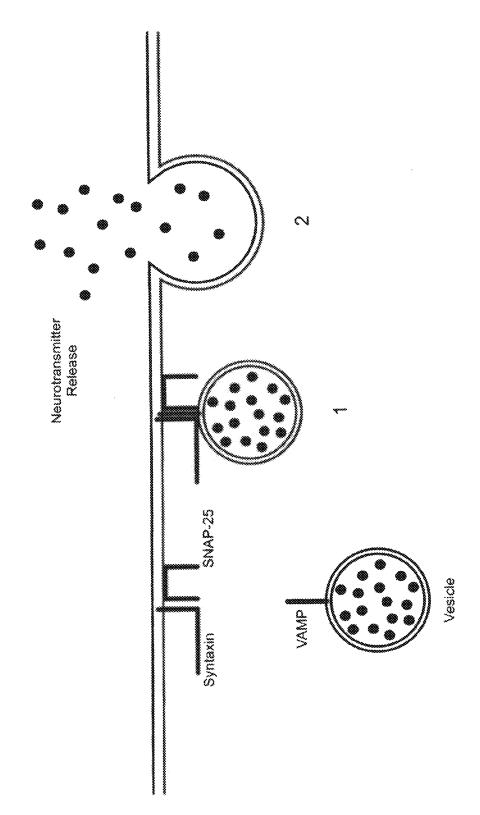
Razai et al. (J. Mol. Biol. 2005; 351: 158-69).

Wictome et al. (Appl. Environ. Microbiol. Sep. 1999; 65 (9): 3787-92).

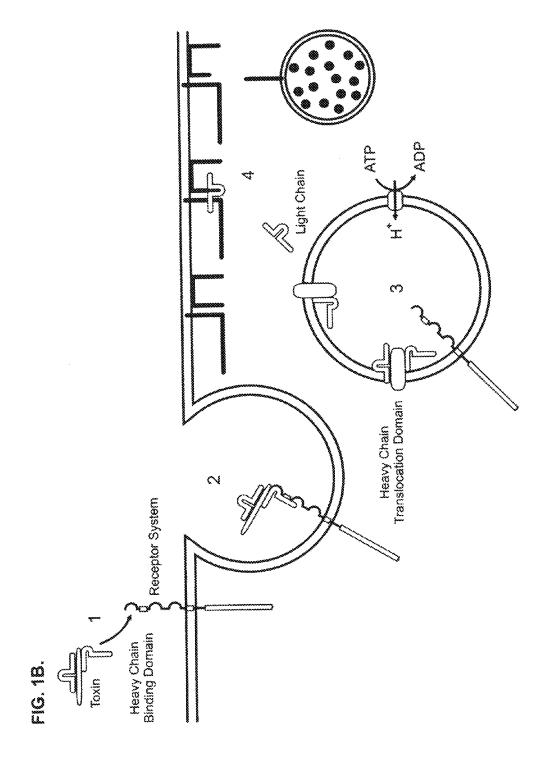
Hallis et al. (J. Clin. Microbiol. Aug. 1996; 34 (8): 1934-8).

Purkiss et al. (Neurotoxicology. 2001; 22: 447-53).

Bendig, Mary, Humanization of Rodent Monoclonal Antibodies by CDR Grafting, A Companion to Methods in Enzymology, 1995, 83-93, 8.

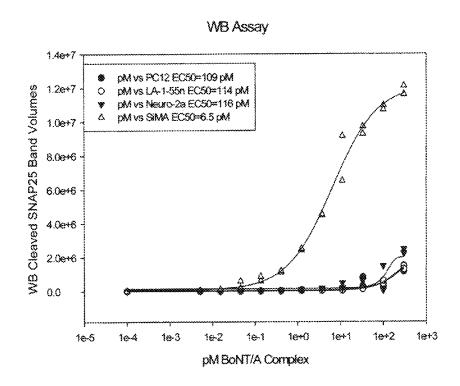

Blitzer, Andrew et al, Laryngoscope, Nov. 1986, 1300-1301, 96(11). Colman, P.M., Effects of Amino Acid Sequence Changes on Antibody-Antigen Interactions, Research Immunology, 1994, 33-36, 145.

Padlan, Eduardo et al, Structure of an Antibody-Antigen-Complex: Crystal Structure of the HyHEL-10 Fab-Lysoyme Complex, Proc Natl Acad Sci, Aug. 1989, 5938-5942, 86.


Rudikoff, Stuart et al, Single Amino Acid Substitution Altering Antigen-Binding Specificity, Proc. Natl. Acad. Sci., Mar. 1982, 1979-1983, 79.

Tamura, Midori et al, Structural Correlates of an Anticarcinoma Antibody: Identification of Specificity-Determining Residues (SDRs) and Development of a Minimally Immunogenic Antibody Variant by Retention of SDRs Only, J Immunol, 2000, 1432-1441, 164

^{*} cited by examiner


چ پ

Feb. 2, 2016

FIG. 2.

A

8

FIG. 3.

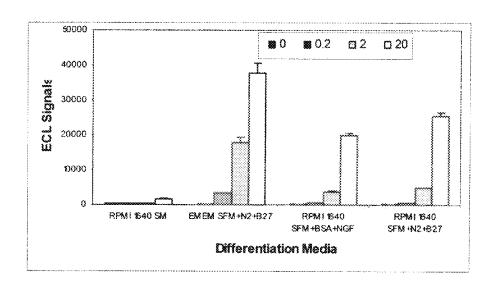


FIG. 4.

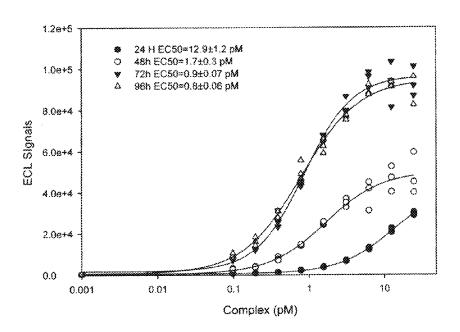


FIG. 5.

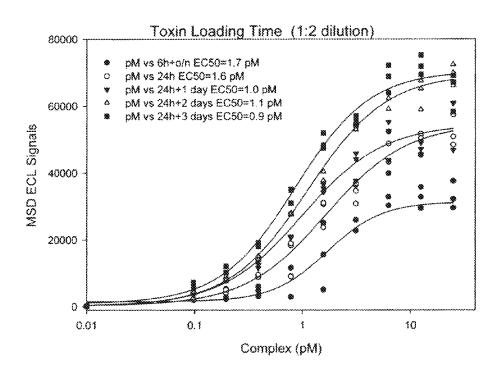


FIG. 6.

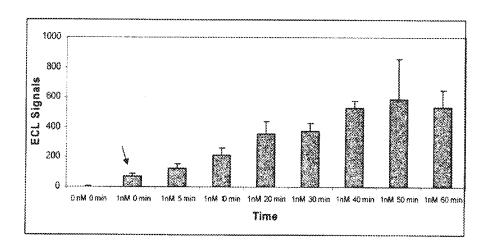


FIG. 7.

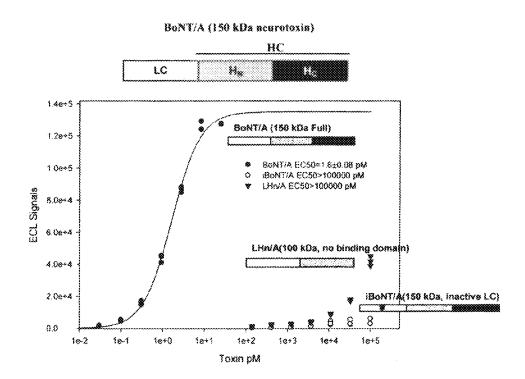
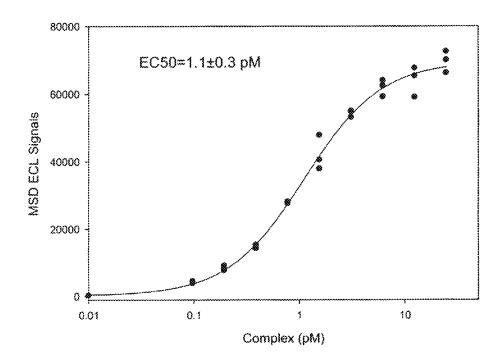
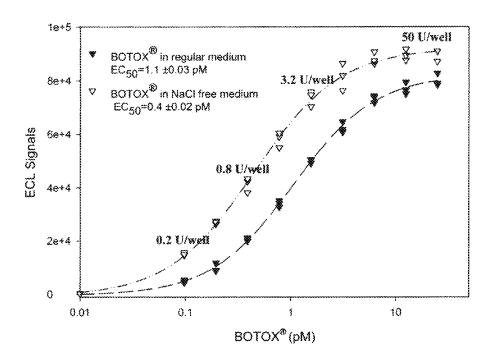
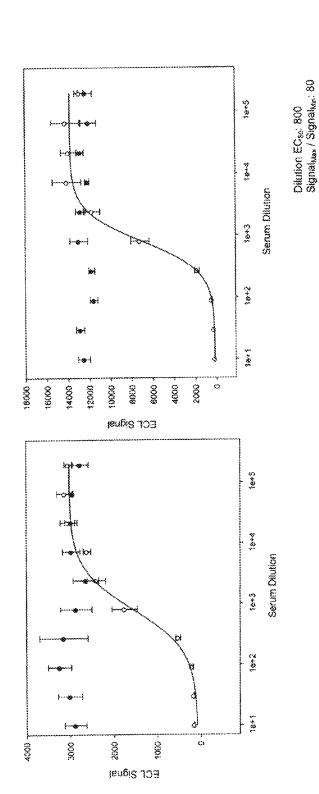


FIG. 8.


FIG.9.

3 days differentitaion 15 hour exposure

> 6 hours differentitation 15 hour exposure

E S S

Naïve Human Serum
 Immunized Human Serum

IMMUNO-BASED BOTULINUM TOXIN SEROTYPE A ACTIVITY ASSAYS

This application is a divisional application of U.S. application Ser. No. 12/403,531, filed on Mar. 13, 2009, now U.S. 5 Pat. No. 8,198,034, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/036,723, filed Mar. 14, 2008, both incorporated entirely by reference.

The ability of Clostridial toxins, such as, e.g., Botulinum 10 neurotoxins (BoNTs), BoNT/A, BoNT/B, BoNT/C1, BoNT/ D, BoNT/E, BoNT/F and BoNT/G, and Tetanus neurotoxin (TeNT), to inhibit neuronal transmission are being exploited in a wide variety of therapeutic and cosmetic applications, see e.g., William J. Lipham, Cosmetic and Clinical Applications 15 of Botulinum Toxin (Slack, Inc., 2004). Clostridial toxins commercially available as pharmaceutical compositions include, BoNT/A preparations, such as, e.g., BOTOX® (Allergan, Inc., Irvine, Calif.), DYSPOR®/RELOXIN®, (Ipsen Ltd., Slough, England), PURTOX® (Mentor Corp., Santa 20 Barbara, Calif.), XEOMIN® (Merz Pharmaceuticals, GmbH., Frankfurt, Germany), NEURONOX® (Medy-Tox, Inc., Ochang-myeon, South Korea), BTX-A (Biogen-tech Ltd., University, Yantai, Shandong, China); and BoNT/B preparations, such as, e.g., MYOBLOC®/NEUROBLOC® 25 (Solstice Neurosciences, Inc., South San Francisco, Calif.). As an example, BOTOX® is currently approved in the U.S. for the treatment of cervical dystonia in adults to decrease the severity of abnormal head position and neck pain associated with cervical dystonia; for the treatment of severe primary axillary hyperhidrosis that is inadequately managed with topical agents; and for the treatment of strabismus and blepharospasm associated with dystonia, including benign essential blepharospasm or VII nerve disorders in patients 12 years of age and above.

At present the mouse LD₅₀ bioassay, a lethality test, remains the "gold standard" used by all pharmaceutical manufacturers to express the potency of their preparations. S. S. Amon et al., JAMA 285: 1059-1070 (2001). In fact, the units on the pharmaceutical preparations' labels are mouse 40 LD₅₀ units and the number of animals needed to produce statistically useful LD_{50} data is large. The advantage of the mouse LD₅₀ bioassay is that it measures all the steps necessary for botulinum toxin uptake (e.g., toxin binding to a cell surface receptor, internalization of the toxin-receptor com- 45 plex, light chain translocation into the cytoplasm, light chain cleavage of substrate), instead of merely determining the activity for only part of this intoxication process, such as, e.g., in vitro assays that only measure light chain enzymatic activity. Unfortunately, the mouse LD_{50} bioassay suffers from 50 many drawbacks including high operational cost due to the large numbers of laboratory animals required, a lack of specificity since all BoNT serotypes will cause the same measurable end-point, and the potential for inaccuracy unless large animal groups are used. In addition, animal rights groups 55 have exerted pressure on regulatory agencies in the U.S. (FDA/NICEATM/ICCVAM) and Europe (MHRA and EDQM), and on pharmaceutical companies manufacturing botulinum neurotoxin products to reduce animal testing and more importantly replace the mouse LD_{50} bioassay for product release. The regulatory agencies are engaging pharmaceutical companies to apply the three "Rs" principle to the potency testing of botulinum neurotoxins: Reduce, Refine, Replace. D. Straughan, Progress in Applying the Three Rs to the Potency Testing of Botulinum Toxin Type A, Altern. Lab. 65 Anim. 34(3): 305-313 (2006). In recent years, several steps have been already taken to reduce and refine the mouse LD_{50}

2

bioassay in order to standardize the protocol and produce more consistent data using fewer animals per assay.

Thus, a simple, reliable, validated and governmental agency acceptable botulinum toxin activity assay that can evaluate the integrity of all the steps necessary in botulinum toxin uptake would be of significant value because such a non-animal based assay would alleviate the need for animal testing and all the disadvantages, costs and ethical concerns associated with this type of animal-based assay. The present specification provides novel compositions, cells, and methods for assaying the activity of a botulinum toxin A useful for various industries, such as, e.g., the pharmaceutical and food industries, and provides related advantages as well. Such compositions, cells, and methods do not use live animals or tissues taken from live animals, but can evaluate all the steps necessary for neurotoxin action.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic of the current paradigm of neurotransmitter release and Clostridial toxin intoxication in a central and peripheral neuron. FIG. 1A shows a schematic for the neurotransmitter release mechanism of a central and peripheral neuron. The release process can be described as comprising two steps: 1) vesicle docking, where the vesiclebound SNARE protein of a vesicle containing neurotransmitter molecules associates with the membrane-bound SNARE proteins located at the plasma membrane; and 2) neurotransmitter release, where the vesicle fuses with the plasma membrane and the neurotransmitter molecules are exocytosed. FIG. 1B shows a schematic of the intoxication mechanism for tetanus and botulinum toxin activity in a central and peripheral neuron. This intoxication process can be described as comprising four steps: 1) receptor binding, where Clostridial toxin binds to a Clostridial receptor complex and initiates the intoxication process; 2) complex internalization, where after toxin binding, a vesicle containing a toxin/receptor system complex is endocytosed into the cell; 3) light chain translocation, where multiple events are thought to occur, including changes in the internal pH of the vesicle, formation of a channel pore comprising the H_N domain of Clostridial toxin heavy chain, separation of the Clostridial toxin light chain from the heavy chain, and release of the light chain and 4) enzymatic target modification, where the light chain of Clostridial toxin proteolytically cleaves its target SNARE substrates, such as, e.g., SNAP-25, VAMP or Syntaxin, thereby preventing vesicle docking and neurotransmitter

FIG. 2 shows a comparison of BoNT/A uptake in four cell lines by Western blot analysis. FIG. 2A shows a graph of SNAP-25 cleavage product detected based on amount of BoNT/A used to treat the cell line. The data were analyzed in SigmaPlot using a 4 parameter logistic model and EC_{50} values were obtained for each cell line. Ranking of SNAP-25 cleavage product signals detected was: SiMa>>Neuro-2a>LA1-55n>PC12. FIG. 2B shows the signal-to-noise ratios of the raw signals at 300 pM vs. 0 pM and 1.2 pM vs. 0 pM were calculated for the assay. SiMa cells generated the highest signal-to-noise ratios and the lowest EC_{50} values.

FIG. 3 shows optimization of cell differentiation media for established cell lines useful in an immuno-based method of detecting BoNT/A activity disclosed in the present specification.

FIG. 4 shows optimization of cell differentiation time for cells comprising an established cell line useful in an immunobased method of detecting BoNT/A activity disclosed in the present specification.

FIG. 5 shows optimization of BoNT/A treatment of cells comprising an established cell line useful in an immunobased method of detecting BoNT/A activity disclosed in the present specification. The results indicate an EC_{50} of less than 2 pM was achieved with any of the BoNT/A treatments tested. 5

FIG. 6 shows the sensitivity of an immuno-based method of detecting BoNT/A activity disclosed in the present specification. The results indicated that uptake of BoNT/A by the cells took less than one minute before producing significant amounts of SNAP-25 cleavage product over background.

FIG. 7 shows the specificity of an immuno-based method of detecting BoNT/A activity disclosed in the present specification. The results indicate that the immuno-based methods of detecting BoNT/A activity disclosed in the present specification can measure all the steps involved in BoNT/A intoxication.

FIG. 8 shows a dose response curve of differentiated SiMa cells treated with a BoNT/A complex using an immuno-based method of detecting BoNT/A activity disclosed in the present specification.

FIG. 9 shows the results of an immuno-based BoNT/A activity assay for a formulated BoNT/A pharmaceutical product using an immuno-based method of detecting BoNT/A activity disclosed in the present specification.

FIG. 10 show the detection of neutralizing α -BoNT/A ²⁵ antibodies in human serum using an immuno-based method of detecting BoNT/A activity disclosed in the present specification.

DETAILED DESCRIPTION

The present specification provides novel assays for determining the presence or absence of an active BoNT/A in a sample and for determining the activity/potency of a BoNT/A preparation. The novel cell-based assays disclosed in the 35 present specification rely on cells, reagents and detection methods that enable the assay to detect picomolar quantities of BoNT/A in a sample. The cell-based assays disclosed in the present specification reduce the need for animal toxicity studies, yet serve to analyze multiple functions BoNT/A, namely, 40 binding and cellular uptake of toxin, translocation into the cell cytosol, and protease activity. As discussed further below, the novel methods and compositions can be used to analyze crude and bulk samples as well as highly purified di-chain toxins and formulated toxin products and further are ame-45 nable to automated high throughput assay formats.

Thus, one aspect disclosed in the present specification provides compositions for producing α-SNAP-25 antibodies that can bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond 50 from a SNAP-25 cleavage product. Compositions can comprise an adjuvant and a composition including a SNAP-25 antigen, a carrier linked to a SNAP-25 antigen, or a carrier linked to a flexible spacer linked to a SNAP-25 antigen, where the flexible linker intervenes between the SNAP-25 antigen 55 and the carrier. It is envisioned that any and all SNAP-25 antigens that triggers an immune response that produce a α-SNAP-25 antibody that can bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product can 60 be useful as a SNAP-25 antigen, including, without limitation, a SNAP-25 antigen derived from a naturally occurring SNAP-25, a SNAP-25 antigen derived from a non-naturally occurring SNAP-25, and a SNAP-25 antigen comprising an immunoreactive fragment of the SNAP-25, the SNAP-25 from a naturally occurring SNAP-25 or a non-naturally occurring SNAP-25. SNAP-25 antigens useful for producing

4

 α -SNAP-25 antibodies that can bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product include, without limitation, SNAP-25 antigens comprising a SNAP-25 peptide having a carboxylated C-terminal glutamine linked to a carrier peptide, including, without limitation SEO ID NO: 38. Other compositions useful for making α -SNAP-25 antibodies that can bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product include, without limitation, a composition comprising a carrier linked to a flexible linker linked to a SNAP-25 antigen a carboxylated C-terminal glutamine, wherein the flexible linker intervenes between the SNAP-25 antigen and the carrier. It is envisioned that any and all adjuvants can be useful in such a composition, including, without limitation, polyethylene glycol (PEG), monomethoxypolyethylene glycol (mPEG), polyvinyl alcohol (PVA), complete and incomplete 20 Freund's adjuvant.

Another aspect disclosed in the present specification provides methods of producing an α-SNAP-25 antibody that can bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product. Aspects of this method comprise the steps of (a) administering to an animal a composition disclosed in the present specification; (b) collecting from the animal a sample containing an α-SNAP-25 antibody or α -SNAP-25 antibody-producing cell; and (c) isolating the α -SNAP-25 antibody from the sample. The methods disclosed are useful for making either α -SNAP-25 monoclonal antibodies that can bind an epitope comprising a carboxylterminus glutamine from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product or α-SNAP-25 polyclonal antibodies that can bind an epitope comprising a carboxyl-terminus glutamine from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product.

Still another aspect disclosed in the present specification provides α -SNAP-25 antibodies that can bind an epitope comprising a carboxyl-terminus at the P_1 residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product. Such α -SNAP-25 antibodies include both naturally-occurring and non-naturally-occurring antibodies, as well as, monoclonal α -SNAP-25 antibodies or polyclonal α -SNAP-25 antibodies. Monoclonal α -SNAP-25 antibodies useful as α -SNAP-25 antibodies that bind an epitope comprising a carboxyl-terminus at the P_1 residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product, include, without limitation, the monoclonal α -SNAP-25 antibodies produced from hybridoma cell lines 1D3B8, 2C9B10, 2E2A6, 3C1A5 and 3C3E2.

Yet another aspect disclosed in the present specification provides methods of detecting BoNT/A activity. Aspects of this method comprise the steps of (a) treating a cell from an established cell line with a sample comprising a BoNT/A, wherein the cell from an established cell line is susceptible to BoNT/A intoxication; (b) isolating from the treated cell a SNAP-25 component comprising a SNAP-25 cleavage product having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond; (c) contacting the SNAP-25 component with an α -SNAP-25 antibody that can bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product; and (d) detecting the presence of an antibody-antigen complex comprising the α -SNAP-25 antibody and the SNAP-25 cleavage product; wherein detection by the antibody-antigen complex is indicative of

BoNT/A activity. The α -SNAP-25 antibody of step c can optionally be linked to a solid phase support.

Yet another aspect disclosed in the present specification provides methods of detecting BoNT/A activity. Aspects of this method comprise the steps of (a) treating a cell from an 5 established cell line with a sample comprising a BoNT/A, wherein the cell from an established cell line can uptake a BoNT/A; (b) isolating from the treated cell a SNAP-25 component comprising a SNAP-25 having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond; (c) contacting the SNAP-25 component with an α -SNAP-25 antibody that can bind an epitope comprising a carboxylterminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product; and (d) detecting the presence of an antibody-antigen complex com- 15 prising the α-SNAP-25 antibody and the SNAP-25 cleavage product; wherein detection by the antibody-antigen complex is indicative of BoNT/A activity. The α -SNAP-25 antibody of step c can optionally be linked to a solid phase support.

A further aspect disclosed in the present specification pro- 20 vides methods of determining BoNT/A immunoresistance in a mammal. Aspects of this method comprise the steps of (a) adding a BoNT/A to a test sample obtained from a mammal being tested for the presence or absence of α -BoNT/A neutralizing antibodies; (b) treating a cell from an established cell 25 line with the test sample, wherein the cell from an established cell line is susceptible to BoNT/A intoxication; (c) isolating from the treated cells a SNAP-25 component comprising a SNAP-25 cleavage product having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond; (d) 30 contacting the SNAP-25 component with an α -SNAP-25 antibody that can bind an epitope comprising a carboxylterminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product; (e) detecting the presence of an antibody-antigen complex comprising the 35 α -SNAP-25 antibody and the SNAP-25 cleavage product; (f) repeating steps a-e with a negative control sample instead of a test sample; and (g) comparing the amount of antibodyantigen complex detected in step (e) to the amount of antibody-antigen complex detected in step (f), wherein detection 40 of a lower amount of antibody-antigen complex detected in step (e) relative to the amount of antibody-antigen complex detected in step (f) is indicative of the presence of α -BoNT/A neutralizing antibodies. The α -SNAP-25 antibody of step d can optionally be linked to a solid phase support. The control 45 sample in step f can also include a positive control sample, in addition to the negative control sample.

Clostridia toxins produced by Clostridium botulinum, Clostridium tetani, Clostridium baratii and Clostridium butyricum are the most widely used in therapeutic and cos- 50 metic treatments of humans and other mammals. Strains of C. botulinum produce seven antigenically-distinct serotypes of botulinum toxins (BoNTs), which have been identified by investigating botulism outbreaks in man (BoNT/A, BoNT/B, BoNT/E and BoNT/F), animals (BoNT/C1 and BoNT/D), or 55 isolated from soil (BoNT/G). While all seven botulinum toxin serotypes have similar structure and biological properties, each also displays heterogeneous characteristics, such as, e.g., different pharmacological properties. In contrast, tetanus toxin (TeNT) is produced by a uniform group of C. tetani. 60 Two other species of Clostridia, C. baratii and C. butyricum, also produce toxins similar to BoNT/F and BoNT/E, respectively.

Clostridial toxins are each translated as a single chain polypeptide of approximately 150 kDa that is subsequently cleaved by proteolytic scission within a disulfide loop by a naturally-occurring protease, such as, e.g., an endogenous

6

Clostridial toxin protease or a naturally-occurring protease produced in the environment. This post-translational processing yields a di-chain molecule comprising an approximately 50 kDa light chain (LC) and an approximately 100 kDa heavy chain (HC) held together by a single disulfide bond and noncovalent interactions. Each mature di-chain molecule comprises three functionally distinct domains: 1) an enzymatic domain located in the LC that includes a metalloprotease region containing a zinc-dependent endopeptidase activity which specifically targets core components of the neurotransmitter release apparatus; 2) a translocation domain contained within the amino-terminal half of the $HC(H_N)$ that facilitates release of the LC from intracellular vesicles into the cytoplasm of the target cell; and 3) a binding domain found within the carboxyl-terminal half of the HC(H_c) that determines the binding activity and binding specificity of the toxin to the receptor complex located at the surface of the target cell.

The binding, translocation and enzymatic activity of these three functional domains are all necessary for toxicity. While all details of this process are not yet precisely known, the overall cellular intoxication mechanism whereby Clostridial toxins enter a neuron and inhibit neurotransmitter release is similar, regardless of serotype or subtype. Although the applicants have no wish to be limited by the following description, the intoxication mechanism can be described as comprising at least four steps: 1) receptor binding, 2) complex internalization, 3) light chain translocation, and 4) enzymatic target modification (FIG. 1). The process is initiated when the HC domain of a Clostridial toxin binds to a toxin-specific receptor system located on the plasma membrane surface of a target cell. The binding specificity of a receptor complex is thought to be achieved, in part, by specific combinations of gangliosides and protein receptors that appear to distinctly comprise each Clostridial toxin receptor complex. Once bound, the toxin/receptor complexes are internalized by endocytosis and the internalized vesicles are sorted to specific intracellular routes. The translocation step appears to be triggered by the acidification of the vesicle compartment. This process seems to initiate important pH-dependent structural rearrangements that increase hydrophobicity, promote pore formation, and facilitate separation of the heavy and light chains of the toxin. Once separated, the light chain endopeptidase of the toxin is released from the intracellular vesicle into the cytosol where it appears to specifically target core components of the neurotransmitter release apparatus. These core proteins, vesicleassociated membrane protein (VAMP)/synaptobrevin, synaptosomal-associated protein of 25 kDa (SNAP-25) and Syntaxin, are necessary for synaptic vesicle docking and fusion at the nerve terminal and constitute members of the soluble N-ethylmaleimide-sensitive factor-attachment protein-receptor (SNARE) family. BoNT/A and BoNT/E cleave SNAP-25 in the carboxyl terminal region, releasing a nine or twenty six amino acid fragment, respectively, and BoNT/C1 also cleaves SNAP-25 near the carboxyl terminus releasing an eight amino acid fragment. The botulinum serotypes BoNT/B, BoNT/D, BoNT/F and BoNT/G, and tetanus toxin, act on the conserved central portion of VAMP, and release the amino terminal portion of VAMP into the cytosol. BoNT/C1 cleaves syntaxin at a single site near the cytosolic membrane surface. The selective proteolysis of synaptic SNAREs accounts for the block of neurotransmitter release caused by Clostridial toxins in vivo. The SNARE protein targets of Clostridial toxins are common to exocytosis in a variety of non-neuronal types; in these cells, as in neurons, light chain peptidase activity inhibits exocytosis, see, e.g., Yann Humeau et al., How Botulinum and Tetanus Neurotoxins Block Neurotransmitter Release, 82(5) Biochimie. 427-446 (2000);

Kathryn Turton et al., *Botulinum and Tetanus Neurotoxins:* Structure, Function and Therapeutic Utility, 27(11) Trends Biochem. Sci. 552-558. (2002); Giovanna Lalli et al., *The Journey of Tetanus and Botulinum Neurotoxins in Neurons*, 11(9) Trends Microbiol. 431-437, (2003).

Aspects of the present disclosure comprise, in part, a composition for producing α-SNAP-25 antibodies that can bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product. Other aspects of the present disclosure comprise, in part, an immune response inducing composition for producing α-SNAP-25 antibodies that can bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product. As used herein, the term "immune response 15 inducing composition" refers to a composition comprising a SNAP-25 antigen which, when administered to an animal, stimulates an immune response against the SNAP-25 antigen, thereby producing α-SNAP-25 antibodies that can bind an epitope comprising a carboxyl-terminus at the P₁ residue 20 from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product. The term "immune response" refers to any response by the immune system of an animal to an immune response inducing composition. Exemplary immune responses include, but are not limited to, cellular as well as 25 local and systemic humoral immunity, such as, e.g., CTL responses, including antigen-specific induction of CD8+ CTLs, helper T-cell responses, including T-cell proliferative responses and cytokine release, and B-cell responses including, e.g., an antibody producing response. The term "inducing an immune response" refers to administration of an immune response inducing composition or a polynucleotide encoding the immune response inducing composition, where an immune response is affected, i.e., stimulated, initiated or induced.

A composition comprises a SNAP-25 antigen. As used herein, the term "antigen" refers to a molecule that elicits an immune response and includes, without limitation, peptides, polysaccharides and conjugates of lipids, such as, e.g., lipoproteins and glycolipids. As used herein, the term "SNAP-25 40 antigen" refers to any antigen which has a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond that can elicit an immune response. A SNAP-25 antigen used in an immune response inducing composition must be large enough to be substantially unique in sequence, thus reducing 45 the possibility of producing antibodies that are cross reactive against antigens other than SNAP-25. In addition, a SNAP-25 antigen used in an immune response inducing composition must be small enough to only trigger an immune response substantially against a SNAP-25 having a carboxyl-terminus 50 at the P₁ residue of the BoNT/A cleavage site scissile bond, thus increasing the possibility of producing α -SNAP-25 antibodies that can distinguish a SNAP-25 having a carboxylterminus at the P₁ residue of the BoNT/A cleavage site scissile bond from a SNAP-25 lacking a carboxyl-terminus at the 55 P₁ residue of the BoNT/A cleavage site scissile bond. Furthermore, it is also very desirable to generate α -SNAP-25 antibodies of a single amino acid sequence in a good yield that are reproducibly selective and which bind with acceptable avidity in order to permit the design of a highly sensitive 60

The sequence surrounding a BoNT/A cleavage site present in SNAP-25 is denoted as $P_5-P_4-P_3-P_2-P_1-P_1'-P_2'-P_3'-P_4'-P_5'$, with P_1-P_1' representing the scissile bond. Upon cleavage by BoNT/A, the resulting cleavage products produced comprise 65 a fragment including the $P_5-P_4-P_3-P_2-P_1$ sequence and a fragment including the $P_1'-P_2'-P_3'-P_4'-P_5'$. Thus, as used herein,

8

the term "SNAP-25 having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond" refers to any SNAP-25 having the P₁ residue as its carboxyl-terminal amino acid. For example, Q_{197} - R_{198} of human SNAP-25 (SEQ ID NO: 5) represents the P_1 - P_1 ' scissile bond for the BoNT/A cleavage site. As such, "SNAP-25 having a carboxyl-terminus glutamine of the BoNT/A cleavage site scissile bond" would be any SNAP-25 cleavage product having a glutamine at its carboxyl-terminal amino acid where the glutamine represents Q₁₉₇ of the scissile bond. As another example, K₂₀₄-H₂₀₅ of Torpedo marmorata SNAP-25 (SEQ ID NO: 16) represents the P₁-P₁' scissile bond for the BoNT/A cleavage site. As such, "SNAP-25 having a carboxyl-terminus lysine of the BoNT/A cleavage site scissile bond" would be any SNAP-25 cleavage product having a lysine at its carboxyl-terminal amino acid where the lysine represents K_{204} of the scissile bond.

The SNAP-25 antigen having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond from the BoNT/A cleavage site can be modified to enhance the immunogenicity of a SNAP-25 antigen, a hapten, or any other antigenic compound that is immunogenic, non-immunogenic, or weakly immunogenic when not associated with the modification. In an aspect of this embodiment, the carboxylterminal P₁ residue from the scissile bond of a SNAP-25 antigen can be carboxylated. Carboxylation increases the desired immunogenic properties of a SNAP-25 antigen in two respects. First, because charged amino acids enhance immunogenicity, adding a COO⁻ group to the carboxyl-terminal residue will increase the overall immunogenicity of a SNAP-25 antigen. Second, because the P₁ residue of the BoNT/A cleavage site scissile bond is in a charged state upon cleavage, adding a COO⁻ group to the carboxyl-terminal residue will better mimic the actual antigen that the α-SNAP-25 antibod-35 ies disclosed in the present specification are designed to bind.

In an aspect of this embodiment, the amino-terminal residue from a SNAP-25 antigen can be modified by the addition of an amino acid adapted to attach the SNAP-25 antigen to a carrier protein, such as, e.g., a keyhole limpet hemocyanin (KLH), an ovalbumin (OVA), a thyroglobulin (THY), a bovine serum albumin (BSA), a soybean trypsin inhibitor (STI), or a multiple attachment peptide (MAP). For example, a cysteine residue can be placed at the amino-terminus in order to conjugate the carrier protein KLH.

Thus, an embodiment, a SNAP-25 antigen having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond can be, e.g., at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 25, or at least 30 amino acids in length. In another embodiment, a SNAP-25 antigen having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond can be, e.g., at most 5, at most 6, at most 7, at most 8, at most 9, at most 10, at most 11, at most 12, at most 13, at most 14, at most 15, at most 16, at most 17, at most 18, at most 19, at most 20, at most 25, or at most 30 amino acids in length. In still another embodiment, a SNAP-25 antigen having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond can be, e.g., between 7-12 amino acids, between 10-15 amino acids, or between 13-18 amino

In another embodiment, the SNAP-25 antigen having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond comprises SEQ ID NO: 32. In aspects of this embodiment, the SNAP-25 antigen having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond comprises SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID

NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 147 or SEQ ID NO: 148. In a further embodiment, the SNAP-25 antigen having a carboxyl-terminus at the $\rm P_1$ residue of the BoNT/A cleavage site scissile bond comprises SEQ ID NO: 38

In yet another embodiment, the SNAP-25 antigen having a carboxyl-terminus at the $\rm P_1$ residue of the BoNT/A cleavage site scissile bond comprises SEQ ID NO: 39. In aspects of this embodiment, the SNAP-25 antigen having a carboxyl-terminus at the $\rm P_1$ residue of the BoNT/A cleavage site scissile bond comprises SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43 or SEQ ID NO: 44. In a further embodiment, the SNAP-25 antigen having a carboxyl-terminus at the $\rm P_1$ residue of the BoNT/A cleavage site scissile bond comprises SEQ ID NO: 45.

It is envisioned that any and all SNAP-25 antigens that triggers an immune response that produces α -SNAP-25 antibodies that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond 20 from a SNAP-25 cleavage product can be useful as a SNAP-25 antigen. Thus, amino acid sequence variants comprising SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID 25 NO: 43, SEQ ID NO: 44, SEQ ID NO: 147 or SEQ ID NO: 148 can be useful as a SNAP-25 antigen to trigger an immune response that produces α-SNAP-25 antibodies that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product. Thus, in an embodiment, a SNAP-25 antigen can substitute at least 1, at least 2, at least 3, at least 4, or at least 5 amino acid substitutions, deletions or additions to the SNAP-25 antigens comprising SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, 35 SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 147 or SEQ ID NO: 148. In still another embodiment, a SNAP-25 antigen can have at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% amino 40 acid identity to the SNAP-25 antigens comprising SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 147 or SEQ ID NO: 148.

It is envisioned that one or more carriers may be linked to a SNAP-25 antigen in order to enhance the immunogenicity of a SNAP-25 antigen that is immunogenic, non-immunogenic, or weakly immunogenic when not associated with the carrier. Non-limiting examples, include, e.g., a keyhole lim- 50 pet hemocyanin (KLH), an ovalbumin (OVA), a thyroglobulin (THY), a bovine serum albumin (BSA), a soybean trypsin inhibitor (STI), or a multiple attachment peptide (MAP). As is well known in the art, a non-antigenic or weakly antigenic antigen can be made antigenic by coupling the antigen to a 55 carrier. Various other carrier and methods for coupling an antigen to a carrier are well known in the art. See, e.g., Harlow and Lane, supra, 1998a; Harlow and Lane, supra, 1998b; and David W. Waggoner, Jr. et al., Immunogenicity-enhancing carriers and compositions thereof and methods of using the 60 same, U.S. Patent Publication No. 20040057958 (Mar. 25, 2004). An epitope can also be generated by expressing the epitope as a fusion protein. Methods for expressing polypeptide fusions are well known to those skilled in the art as described, for example, in Ausubel et al., Current Protocols in 65 Molecular Biology (Supplement 47), John Wiley & Sons, New York (1999). As the carboxyl-terminal end of the SNAP-

10

25 antigen must be the P_1 residue of the BoNT/A cleavage site scissile bond, a carrier must be linked to the amino end of the SNAP-25 antigen.

It is envisioned that one or more flexible spacers may be linked to a SNAP-25 antigen in order to enhance the immunogenicity of a SNAP-25 antigen that is immunogenic, nonimmunogenic, or weakly immunogenic when not associated with the flexible linkers. A flexible spacer increases the overall peptide length of the SNAP-25 antigen and provides flexibility, thereby facilitating the proper presentation of the SNAP-25 antigen to the immune cells. As a non-limiting example, a composition can comprise a SNAP-25 antigen linked to one or more flexible spacers in tandem to better present SNAP-25 antigen to immune cells, thereby facilitating the immune response.

A flexible space comprising a peptide is at least one amino acid in length and comprises non-charged amino acids with small side-chain R groups, such as, e.g., glycine, alanine, valine, leucine or serine. Thus, in an embodiment a flexible spacer can be, e.g., at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 amino acids in length. In another embodiment, a flexible spacer can be, e.g., at least 1, at most 2, at most 3, at most 4, at most 5, at most 6, at most 7, at most 8, at most 9, or at most 10 amino acids in length. In still another embodiment, a flexible spacer can be, e.g., between 1-3 amino acids, between 2-4 amino acids, between 3-5 amino acids, between 4-6 amino acids, or between 5-7 amino acids. Non-limiting examples of a flexible spacer include, e.g., a G-spacers such as GGG, GGGG (SEQ ID NO: 55), and GGGGS (SEQ ID NO: 56) or an A-spacers such as AAA, AAAA (SEQ ID NO: 57) and AAAAV (SEQ ID NO: 58). A flexible spacer is linked in-frame to the SNAP-25 antigen as a fusion protein.

As discussed above, a flexible spacer is used, in part, to increase the overall peptide length of the SNAP-25 antigen. For example, a 5-10 amino acid SNAP-25 antigen can have its overall length increased by linking a 3-5 amino acid flexible space to the amino-end of the SNAP-25 antigen. As another example, a 5-10 amino acid SNAP-25 antigen can have its overall length increased by linking a 4-6 amino acid flexible space to the amino-end of the SNAP-25 antigen. As another example, a 5-10 amino acid SNAP-25 antigen can have its overall length increased by linking a 7-10 amino acid flexible space to the amino-end of the SNAP-25 antigen. As another example, a 7-12 amino acid SNAP-25 antigen can have its overall length increased by linking a 1-3 amino acid flexible space to the amino-end of the SNAP-25 antigen. As another example, a 7-12 amino acid SNAP-25 antigen can have its overall length increased by linking a 4-6 amino acid flexible space to the amino-end of the SNAP-25 antigen. The increased length provided by the flexible spacer allows for the selection of a small sized SNAP-25 antigen, thereby increasing the likelihood that the SNAP-25 antigen will only trigger an immune response substantially against a SNAP-25 having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond, thus increasing the possibility of producing α-SNAP-25 antibodies that can distinguish a SNAP-25 having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond from a SNAP-25 lacking a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond.

It is envisioned that compositions disclosed in the present specification can optionally comprise a SNAP-25 antigen disclosed in the present specification and one or more adjuvants. As used herein, the term "adjuvant" when used in reference to a SNAP-25 composition refers to any substance or mixture of substances that increases or diversifies the

immune response to a SNAP-25 antigen. An adjuvant can, for example, serve to reduce the number of immunizations or the amount of antigen required for protective immunization. The use of adjuvants in an immune response inducing composition is well known. The main objective of these adjuvants is to 5 allow an increase in the immune response. Non-limiting adjuvants include, e.g., liposomes, oily phases, including, without limitation, the Freund type of adjuvants, such as, e.g., Freund's complete adjuvant (FCA); Freund's incomplete adjuvant (FIA); sapogenin glycosides, such as, e.g., saponins; 10 carbopol; N-acetylmuramyl-L-alanyl-D-isoglutamine (commonly known as muramyl dipeptide or "MDP"); and lipopolysaccharide (LPS). Such adjuvants are generally used in the form of an emulsion with an aqueous phase, or, more commonly, may consist of water-insoluble inorganic salts. 15 These inorganic salts may consist, for example, of aluminum hydroxide, zinc sulfate, colloidal iron hydroxide, calcium phosphate or calcium chloride. Aluminum hydroxide (Al (OH)₃) is a commonly used adjuvant. Currently, the only FDA-approved adjuvant for use in humans is aluminum salts 20 (Alum) which are used to "depot" antigens by precipitation of the antigens. Adjuvants provided above are merely exemplary. In fact, any adjuvant may be used in a SNAP-25 composition disclosed in the present specification as long as the adjuvant satisfies the requisite characteristics for inducing an 25 immune response.

A carrier disclosed in the present specification may also act as an adjuvant. Specific adjuvants and methods of making and using are described in, e.g., Gupta et al. Vaccine, 11: 993-306, 1993; Amon, R. (Ed.) Synthetic Vaccines 1:83-92, CRC 30 Press, Inc., Boca Raton, Fla., 1987; and David W. Waggoner, Jr. et al., Immunogenicity-Enhancing Carriers and Compositions Thereof and Methods of Using the Same, U.S. Patent Publication No. 20040057958 (Mar. 25, 2004). Additional adjuvants include any compound described in Chapter 7 (pp 35 141-227) of "Vaccine Design, The Subunit and Adjuvant Approach" (eds. Powell, M. F. and Newman, M. J.) Pharmaceutical Biotechnology, Volume 6, Plenum Press (New York). Examples from this compendium include Muramyl Dipeptide (MOP) and Montanide 720. Molecules such as Poly 40 Inosine: Cytosine (Poly I:C) or plasmid DNA containing CpG motifs can also be administered as adjuvants in combination with antigens encapsulated in microparticles. In another example, the adjuvant is an agent that facilitates entry of the antigenic compound into the cytoplasm of a cell such as 45 listeriolysin, streptolysin or a mixture thereof.

Thus, in an embodiment, a SNAP-25 composition comprises a SNAP-25 antigen having a carboxylated carboxylterminal glutamine linked to a carrier peptide. In aspects of this embodiment, a SNAP-25 antigen having a carboxylated 50 carboxyl-terminal glutamine comprises SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 147 or SEQ ID NO: 148. In another aspect of this embodiment, a SNAP-25 antigen comprises SEQ ID NO: 38. In aspects of this embodiment, the carrier peptide is a keyhole limpet hemocyanin (KLH), an ovalbumin (OVA), a thyroglobulin (THY), a bovine serum albumin (BSA), a soybean trypsin inhibitor (STI) or a multiple attachment peptide (MAP).

In another embodiment, a SNAP-25 composition comprises a SNAP-25 antigen having a carboxylated carboxylterminal lysine linked to a carrier peptide. In aspects of this embodiment, SNAP-25 antigen having a carboxylated carboxyl-terminal lysine comprises SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43 or 65 SEQ ID NO: 44. In another aspect of this embodiment, a SNAP-25 antigen comprises SEQ ID NO: 45. In aspects of

this embodiment, the carrier peptide is a keyhole limpet hemocyanin (KLH), an ovalbumin (OVA), a thyroglobulin (THY), a bovine serum albumin (BSA), a soybean trypsin inhibitor (STI) or a multiple attachment peptide (MAP).

In yet another embodiment, a SNAP-25 composition comprises a SNAP-25 antigen having a carboxylated C-terminal glutamine linked to one or more flexible linkers and a carrier peptide wherein the flexible linkers intervene between the SNAP-25 antigen and the carrier peptide. In aspects of this embodiment, SNAP-25 antigen having a carboxylated carboxyl-terminal glutamine comprises SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 147 or SEQ ID NO: 148. In another embodiment, a SNAP-25 antigen comprises SEQ ID NO: 46. In aspects of this embodiment, the carrier peptide is a keyhole limpet hemocyanin (KLH), an ovalbumin (OVA), a thyroglobulin (THY), a bovine serum albumin (BSA), a soybean trypsin inhibitor (STI) or a multiple attachment peptide (MAP). In aspects of this embodiment, the flexible linker is a G-spacer or an A-spacer.

In still another embodiment, a SNAP-25 composition comprises a SNAP-25 antigen having a carboxylated C-terminal lysine linked to a flexible linker and a carrier peptide wherein the flexible linker intervenes between the SNAP-25 antigen and the carrier peptide. In aspects of this embodiment, SNAP-25 antigen having a carboxylated carboxyl-terminal lysine comprises SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43 or SEQ ID NO: 44. In another aspect of this embodiment, a SNAP-25 antigen comprises SEQ ID NO: 47. In aspects of this embodiment, the carrier peptide is a keyhole limpet hemocyanin (KLH), an ovalbumin (OVA), a thyroglobulin (THY), a bovine serum albumin (BSA), a soybean trypsin inhibitor (STI) or a multiple attachment peptide (MAP). In aspects of this embodiment, the flexible linker is a G-spacer or an A-spacer.

Aspects of the present disclosure comprise, in part, a method for producing α-SNAP-25 antibodies that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product. An α-SNAP-25 antibody that binds an epitope comprising a carboxyl-terminus at the P_1 residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product can be produced by a wide variety of methods that are well known in the art. Specific protocols for making and using antibodies as well as detecting, and measuring antibody binding specificity, binding affinity and binding avidity are known in the art. See, e.g., ANTIBODIES: A LABORATORY MANUAL (Edward Harlow & David Lane, eds., Cold Spring Harbor Laboratory Press, 2nd ed. 1998a); and Using Antibodies: A Laboratory Manual: Portable Pro-TOCOL No. I (Edward Harlow & David Lane, Cold Spring Harbor Laboratory Press, 1998b); Molecular Cloning, A Laboratory Manual, 2001; and Current Protocols in Molecular Biology, 2004; David Anderson et al., Therapeutic Polypeptides, Nucleic Acids Encoding Same, and Methods of Use, U.S. Pat. No. 7,034,132 (Apr. 25, 2005); and Beatriz M. Carreno et al., Antibodies Against CTLA4, U.S. Pat. No. 7,034,121 (Apr. 25, 2006).

As a non-limiting example, α -SNAP-25 polyclonal antibodies that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product can be produced by injecting an animal, such as, e.g., a rabbit, a goat, a mouse or another mammal, with one or more injections of a composition disclosed in the present specification. As another non-limiting example, α -SNAP-25 polyclonal antibodies that bind an epitope comprising a carboxyl-terminus at the P₁

residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product can be produced by injecting an egg, such as, e.g., a chicken egg, with one or more injections of a composition disclosed in the present specification. The antibody titer in the immunized animal can be monitored over 5 time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized antigen or a cell-based activity assay. If desired, polyclonal antibodies for an α-SNAP-25 antibody that binds an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as protein A affinity chromatography to obtain the IgG fraction, or by affinity purification against the peptide used for producing the 15 antibodies.

As another non-limiting example, α-SNAP-25 monoclonal antibody that binds an epitope comprising a carboxylterminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product can be pro- 20 duced using a hybridoma method. See e.g., Chapter 6 Monoclonal Antibodies, pp. 196-244, Harlow & Lane, supra, 1998a; and Chapter 7 Growing Hybridomas, pp. 245-282, Harlow & Lane, supra, 1998a; and Goding, pp. 59-103, Press, (1986). In this method, a host animal, such as, e.g., a mouse, a hamster, or another appropriate host animal, is typically exposed to one or more injections of a SNAP-25 antigen disclosed in the present specification to elicit lymphocytes that produce or are capable of producing α -SNAP-25 anti- 30 bodies that will specifically bind to a SNAP-25 having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond. The antibody titer in the immunized animal can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using 35 immobilized antigen or a cell-based activity assay. Alternatively, the lymphocytes can be immunized in vitro using a suitable cell culture line. At an appropriate time after immunization, e.g., when the antibody titers are highest, antibodyproducing cells are isolated from the animal. Generally, either 40 peripheral blood lymphocytes are used, if cells of human origin are desired, or spleen cells or lymph node cells are used, if non-human mammalian sources are desired. The isolated antibody-producing cells are fused with an immortal cell line using a suitable fusing agent, such as polyethylene 45 glycol, to form a hybridoma cell. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Typically, a murine myeloma cell line is fused with splenocytes harvested from an appropriately immunized mouse to produce the hybridoma. 50 Preferred immortal cell lines are mouse myeloma cell lines that are sensitive to culture medium containing hypoxanthine, aminopterin and thymidine (HAT). Any of a number of myeloma cell lines can be used as a fusion partner according to standard techniques, e.g., the P3-NS1/1-Ag4-1, P3-x63-55 Ag8.653 or Sp2/O-Ag14 myeloma lines. Hybridoma cells resulting from the fusion are then selected using HAT medium, which kills unfused and unproductively fused myeloma cells (unfused splenocytes die after several days in culture because they are not transformed). The culture 60 medium in which the hybridoma cells are grown can then be assayed for the presence of α -SNAP-25 monoclonal antibodies that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product. For example, hybridoma supernatants can be screened using α -SNAP-25 positive media in an immunoprecipitation assay, in vitro binding assay, such as,

14

e.g., a radioimmunoassay (RIA) or an enzyme-linked immunoabsorbent assay (ELISA), or in a cell-based activity assay. Such techniques and assays are known in the art. See e.g., Chapter 11 Immunoprecipitation, pp. 421-470, Harlow & Lane, supra, 1998a; Chapter 12 Immunoblotting, pp. 471-510, Harlow & Lane, supra, 1998a; Chapter 14 Immunoassays, pp. 553-612, Harlow & Lane, supra, 1998a. Additional studies can then be done to determine whether the antibody is also unreactive to a SNAP-25 lacking a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond. The binding affinity of an α-SNAP-25 monoclonal antibody can also be determined, e.g., by Scatchard analysis. See, e.g., Peter J. Munson and David Rodbard, Ligand: A Versatile Computerized Approach For Characterization of Ligand-Binding Systems, 107(1) Anal. Biochem. 220-239 (1980). After the desired hybridoma cells are identified, limiting dilution procedures are used to isolate clones originating from a single cell until a clonal cell line expressing the desired monoclonal antibody is obtained. Those antibodies sufficiently selective for a SNAP-25 having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond and bind with sufficiently high avidity are chosen for further characterization and study.

Another alternative for preparing an α-SNAP-25 mono-Monoclonal Antibodies: Principles and Practice, Academic 25 clonal antibody that binds an epitope comprising a carboxylterminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product is by screening a recombinant combinatorial immunoglobulin library, such as, e.g., an antibody phage display library, with a SNAP-25 peptide and isolate immunoglobulin library members that bind a SNAP-25 having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond. Kits for generating and screening phage display libraries are commercially available, such as, e.g., the Recombinant Phage Antibody System (Amersham GE Healthcare, Piscataway, N.J.); and the SurfZAPTM Phage Display Kit (Stratagene, La Jolla, Calif.). Additionally, examples of methods and reagents useful in generating and screening antibody display library can be found in, for example, Ladner et al. U.S. Pat. No. 5,223,409; Borrebaeck et al. U.S. Pat. No. 5,712,089; Griffiths et al. U.S. Pat. No. 5,885,793; Griffiths et al. U.S. Pat. No. 5,962,255; McCafferty et al. U.S. Pat. No. 5,969,108; Griffiths et al. U.S. Pat. No. 6,010,884; Jespers et al. U.S. Pat. No. 6,017,732; Borrebaeck et al. U.S. Pat. No. 6,027,930; Johnson et al. U.S. Pat. No. 6,140,471; McCafferty et al. U.S. Pat. No. 6,172,197, each of which is hereby incorporated by reference in its entirety.

Aspects of the present disclosure comprise, in part, collecting a sample containing an α -SNAP-25 antibody or α -SNAP-25 antibody-producing cells. As used herein, the term "sample containing an α -SNAP-25 antibody or α -SNAP-25 antibody-producing cell" refers to any biological matter that contains or potentially contains at least one an α -SNAP-25 antibody that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product. It is envisioned that any and all samples that can contain an α-SNAP-25 antibody that binds an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product can be used in this method, including, without limitation, blood, plasma, serum and lymph fluid. It is also envisioned that any cell capable of producing an α-SNAP-25 antibody that binds an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product can be used in this method, including, without limitation, a CD8 cells, a CTL cell, a helper T-cell and a

B-cell. A variety of well known methods can be used for collecting from an individual a sample containing the α-SNAP-25 antibody or α-SNAP-25 antibody-producing cell, see, e.g., Harlow & Lane, supra, 1998a; and Harlow & Lane, supra, 1998b. Similarly, a variety of well known methods can be used for processing a sample to isolate an α-SNAP-25 antibody that binds an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product. A procedure for collecting a sample can be selected based on the type of antibody to be isolated. As a non-limiting example, when isolating an α-SNAP-25 polyclonal antibodies that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product, an appropriate sample can be a 15 blood sample containing such α-SNAP-25 antibodies, whereas when isolating an α-SNAP-25 monoclonal antibodies that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product, an appropriate sample can be 20 an α-SNAP-25 antibody-producing cell such as a spleen cell or hybridoma.

Aspects of the present disclosure comprise, in part, isolating an α -SNAP-25 antibody that binds an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleav- 25 age site scissile bond from a SNAP-25 cleavage product from the sample. Methods of isolating an such α -SNAP-25 antibodies, such as, e.g., α -SNAP-25 polyclonal antibodies that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a 30 SNAP-25 cleavage product or α-SNAP-25 monoclonal antibodies that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product are well known to those skilled in the art. See, e.g., Harlow and Lane, supra, 1998a; 35 and Harlow and Lane, supra, 1998b. For example, such α-SNAP-25 polyclonal antibodies can be isolated from the sample by well known techniques, such as, e.g., affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, 40 or alternatively, a specific SNAP-25 antigen can be immobilized on a column or magnetic beads to purify the α -SNAP-25 polyclonal antibodies that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product by 45 immunoaffinity chromatography. An α-SNAP-25 monoclonal antibody that binds an epitope comprising a carboxylterminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product can be isolated from the culture medium or ascites fluid by conventional 50 immunoglobulin purification procedures such as, e.g., protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

Thus, in an embodiment, a method of producing an $\alpha\textsc{-SNAP-25}$ antibody that binds an epitope comprising a carboxyl-terminus at the P_1 residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product comprises the steps (a) administering to an animal a composition comprising a SNAP-25 antigen having a carboxylated C-terminal glutamine linked to a carrier peptide; (b) collecting from the animal a sample containing an $\alpha\textsc{-SNAP-25}$ antibody or $\alpha\textsc{-SNAP-25}$ antibody-producing cell; and (c) isolating the $\alpha\textsc{-SNAP-25}$ antibody component from the sample. In an aspect of this embodiment, the $\alpha\textsc{-SNAP-25}$ antibody that binds an epitope comprising a carboxyl-terminus at the P_1 for residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product is a polyclonal antibody. In

another aspect of this embodiment, an α -SNAP-25 antibody that binds an epitope comprising a carboxyl-terminus at the P_1 residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product is a monoclonal antibody. In a further aspect of this embodiment, an α -SNAP-25 monoclonal antibody that binds an epitope comprising a carboxyl-terminus at the P_1 residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product produced is an IgG subtype. In other aspects of this embodiment, SNAP-25 composition further comprises an adjuvant, such as, e.g., polyethylene glycol (PEG), monomethoxypolyethylene glycol (mPEG), or polyvinyl alcohol (PVA).

16

In another embodiment, a method of producing α -SNAP-25 antibodies that bind an epitope comprising a carboxylterminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product comprises the steps (a) administering to an animal a composition comprising a SNAP-25 peptide having a carboxylated C-terminal glutamine linked to a flexible linker and a carrier peptide wherein the flexible linker intervenes between the SNAP-25 peptide and the carrier peptide; (b) collecting from the animal a sample containing an α -SNAP-25 antibody or α -SNAP-25 antibody-producing cell; and (c) isolating the α -SNAP-25 antibody from the sample. In an aspect of this embodiment, the α -SNAP-25 antibodies that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product is a polyclonal antibody. In another aspect of this embodiment, α-SNAP-25 antibodies that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product is a monoclonal antibody. In a further aspect of this embodiment, an α-SNAP-25 monoclonal antibody that binds an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product produced in an IgG subtype. In other aspects of this embodiment, SNAP-25 composition further comprises an adjuvant, such as, e.g., polyethylene glycol (PEG), monomethoxypolyethylene glycol (mPEG), or polyvinyl alcohol (PVA).

Aspects of the present disclosure comprise, in part, an isolated α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond. As used herein, the term Isolated" refers to separating a molecule from its natural environment by the use of human intervention. As used herein, the term "antibody" refers to a molecule generated by an immune system that was made in response to a particular antigen that specifically binds to that antigen, and includes both naturally occurring antibodies and non-naturally occurring antibodies. As used herein, the term "α-SNAP-25" is synonymous with "anti-SNAP-25" and refers to an antibody that binds to a SNAP-25 antigen. For example, an antibody can be a polyclonal antibody, a monoclonal antibody, a dimer, a multimer, a multispecific antibody, a humanized antibody, a chimeric antibody, bi-functional antibody, a cell-associated antibody like an Ig receptor, a linear antibody, a diabody, or a minibody, so long as the fragment exhibits the desired biological activity, and single chain derivatives of the same. An antibody can be a full-length immunoglobulin molecule comprising the V_H and V_L domains, as well as a light chain constant domain (C_L) and heavy chain constant domains, C_{H1} , C_{H2} and C_{H3} , or an immunologically active fragment of a full-length immunoglobulin molecule, such as, e.g., a Fab fragment, a F(ab')₂ fragment, a Fc fragment, a Fd fragment, a Fv fragment. An antibody can be derived from any vertebrate species (e.g.,

human, goat, horse, donkey, murine, rat, rabbit, or chicken), and can be of any type (e.g., IgG, IgE, IgM, IgD, and IgA), class (e.g., IgA, IgD, IgE, IgG, and IgM) or subclass (IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2). For general disclosure on the structure of naturally occurring antibodies, non-naturally occurring antibodies, and antigenic compound-binding fragments thereof, see, e.g., Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994); Borrabeck, Antibody Engineering, 2d ed. (Oxford University Press 1995), each of which is hereby incorporated by reference in its entirety.

17

Naturally-occurring antibodies are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at 20 one end a variable domain (V_H) followed by a number of constant domains. Each light chain has a variable domain at one end (V_L) and a constant domain at its other end. The constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light-chain vari- 25 able domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains.

The complete antigen-recognition and antigen-binding site 30 is contained within the variable domains of the antibody, i.e., the Fv fragment. This fragment includes a dimer of one heavy chain variable domain (V_H) and one light chain variable domain (V_L) in tight, non-covalent association. Each domain comprises four framework regions (FR), which largely adopt- 35 ing a β -sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases form part of, the β -sheet structure. Each hypervariable region comprises an amino acid sequence corresponding to a complementarity determining region (CDRs). Collectively, it 40 the three-dimensional configuration of the six CDR regions that define an antigen-binding site on the surface of the V_H - V_L dimmer that confers antigen-binding specificity. See e.g., Cyrus Chothia, et al., Conformations of Immunoglobulin Hypervariable Regions, Nature 342(6252): 877-883 (1989); 45 Elvin A. Kabat, et al Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), each of which is incorporated by reference in its entirety. The constant domains of the antibody are not involved directly in binding an antibody to an 50 antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cyto-

A target antigen generally has one or more binding sites, also called epitopes, which are recognized by the CDR-55 formed antigen-binding site. As used herein, an "epitope" is synonymous with "antigenic determinant" and refers to the site on a target antigen, such as, e.g., a peptide, polysaccharide or lipid-containing molecule, capable of specific binding to an immunoglobulin or T-cell receptor or otherwise interacting with a molecule. Each antibody that specifically binds to a different epitope has a different structure. Thus, one antigen may have more than one corresponding antibody.

Polyclonal antibodies refer to a heterogeneous population of antibody molecules that contain at least two species of 65 antibody capable of binding to a particular antigen. By definition, a polyclonal antibody includes two different antibod-

18

ies that bind to at least two different epitopes. As used herein, the term "monoclonal antibody" or "monoclonal antibodies" refer to a substantially homogeneous population of antibody molecules that contain only one species of antibody capable of binding a particular antigen i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. By definition, a monoclonal antibody binds to a single epitope. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibodies, each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they may be synthesized uncontaminated by other antibodies. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present disclosure may be made by the hybridoma method first described by Kohler et al (1975) Nature 256:495, or may be made by recombinant DNA methods (see for example: U.S. Pat. Nos. 4,816,567; 5,807,715). The monoclonal antibodies may also be isolated from phage antibody libraries using the techniques described in Clackson et al (1991) Nature, 352:624-628; Marks et al (1991) J. Mol. Biol., 222:581-597; for example.

Thus, in an embodiment, an α -SNAP-25 antibody comprises a heavy chain variable domain (V_H) and a light chain variable domain (V_L) that selectively binds to a SNAP-25 having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond. In an aspect of this embodiment, the heavy chain variable domain (V_H) is SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 80, or SEQ ID NO: 82. In another aspect of this embodiment, the light chain variable domain (V_L) is SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, or SEQ ID NO: 92.

In another embodiment, an α -SNAP-25 antibody comprises a heavy chain variable domain (V_H) CDR1 region, a CDR2 region, a CDR3 region, or any combination thereof that selectively binds to a SNAP-25 having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond. In an aspect of this embodiment, the heavy chain variable domain (V_H) CDR1 region is SEQ ID NO: 93, SEQ ID NO: 94, SEQ ID NO: 95, SEQ ID NO: 118, SEQ ID NO: 119, or SEQ ID NO: 120. In another aspect of this embodiment, the heavy chain variable domain (V_H) CDR2 region is SEQ ID NO: 96, SEQ ID NO: 97, SEQ ID NO: 98, SEQ ID NO: 99, SEQ ID NO: 121, SEQ ID NO: 122, or SEQ ID NO: 123. In yet another aspect of this embodiment, the heavy chain variable domain (V_H) CDR3 region is SEQ ID NO: 100, SEQ ID NO: 101, SEQ ID NO: 102, or SEQ ID NO: 124.

In another embodiment, an α -SNAP-25 antibody comprises a light chain variable domain (V_L) CDR1 region, a CDR2 region, a CDR3 region, or any combination thereof that selectively binds to a SNAP-25 having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond. In an aspect of this embodiment, the light chain variable domain (V_L) CDR1 region is SEQ ID NO: 103, SEQ ID NO: 104, SEQ ID NO: 105, SEQ ID NO: 106, SEQ ID NO: 107, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, or SEQ ID NO: 129. In another aspect of this embodiment, the light chain variable domain (V_L) CDR2 region is SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111, or SEQ ID NO: 112. In yet another aspect of this embodiment, the light chain variable domain

 (V_L) CDR3 region is SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, or SEQ ID NO: 117.

In yet another embodiment, an $\alpha\textsc{-}SNAP\textsc{-}25$ antibody specifically binds an epitope comprising a SNAP-25 having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond. In an aspect of this embodiment, the epitope comprises SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 147 or SEQ ID NO: 148. In an aspect of this embodiment, the epitope comprises SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, or SEQ ID NO: 44.

As discussed above, the sequence surrounding a BoNT/A cleavage site present in SNAP-25 is denoted P₅-P₄-P₃-P₂-P₁- $P_1'-P_2'-P_3'-P_4'-P_5'$, with P_1-P_1' representing the scissile bond. Upon cleavage by BoNT/A, the resulting cleavage products produced comprise a fragment including the P₅-P₄-P₃-P₂-P₁ sequence and a fragment including the P₁'-P₂'-P₃'P₄'-P₅'. As used herein, the term "α-SNAP-25 antibodies that bind an 20 epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product" refers to α-SNAP-25 antibodies that selectively bind to any SNAP-25 cleavage product fragment comprising the P₅-P₄-P₃-P₂-P₁ sequence, but not to any SNAP-25 25 cleavage product fragment comprising the P₁'-P₂'-P₃'-P₄'-P₅' sequence or to any SNAP-25 having an intact P₁-P₁' scissile bond of a BoNT/A cleavage site. As used herein, the term "α-SNAP-25₁₉₇ antibody" refers to an antibody that selectively binds to a SNAP-25 having a carboxyl-terminus P₁ residue that corresponds to glutamine 197 of SEQ ID NO: 5. As used herein, the term " α -SNAP-25₂₀₄ antibody" refers to an antibody that selectively binds to a SNAP-25 having a carboxyl-terminus P₁ residue that corresponds to lysine 204 of SEQ ID NO: 16.

As used herein, the term "selectively" refers to having a unique effect or influence or reacting in only one way or with only one thing. As used herein, the term "selectively binds," when made in reference to an antibody, refers to the discriminatory binding of the antibody to the indicated target epitope such that the antibody does not substantially cross react with non-target epitopes. The minimal size of a peptide epitope, as defined herein, is about five amino acids, and a peptide epitope typically comprises at least 5, at least 6, at least 7, at 45 least 8, at least 9, at least 10, at least 15, or at least 20 amino acids. A peptide epitope may be discontinuous, i.e., it comprises amino acid residues that are not adjacent in the primary structure of the peptide but are brought together into an epitope by way of the secondary, tertiary, or quaternary struc- 50 ture of the peptide. Furthermore, it is also noted that an epitope might comprise a portion of a molecule other than an amino acid sequence, such as, e.g., a carbohydrate moiety, a lipid moiety like lipoproteins or glycolipids, or a chemicallymodified amino acid moiety like a phosphorylated amino 55 acid. In aspects of this embodiment, an α-SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond can selectively bind a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage 60 site scissile bond comprising at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, or at least 20 amino acids. In other aspects of this embodiment, an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage 65 site scissile bond can selectively bind a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A

20

cleavage site scissile bond comprising at most 5, at most 6, at most 7, at most 8, at most 9, at most 10, at most 15, or at most 20 amino acids.

Selective binding includes binding properties such as, e.g., binding affinity, binding specificity, and binding avidity. See David J. King, Applications and Engineering of Monoclonal Antibodies, pp. 240 (1998). Binding affinity refers to the length of time the antibody resides at its epitope binding site, and can be viewed as the strength with which an antibody binds its epitope. Binding affinity can be described an antibody's equilibrium dissociation constant (KD), which is defined as the ratio Kd/Ka at equilibrium. Where Ka is the antibody's association rate constant and kd is the antibody's dissociation rate constant. Binding affinity is determined by both the association and the dissociation and alone neither high association or low dissociation can ensure high affinity. The association rate constant (Ka), or on-rate constant (Kon), measures the number of binding events per unit time, or the propensity of the antibody and the antigen to associate reversibly into its antibody-antigen complex. The association rate constant is expressed in M⁻¹ s⁻¹, and is symbolized as follows: [Ab]×[Ag]×Kon. The larger the association rate constant, the more rapidly the antibody binds to its antigen, or the higher the binding affinity between antibody and antigen. The dissociation rate constant (Kd), or off-rate constant (Koff), measures the number of dissociation events per unit time propensity of an antibody-antigen complex to separate (dissociate) reversibly into its component molecules, namely the antibody and the antigen. The dissociation rate constant is expressed in s⁻¹, and is symbolized as follows: [Ab+Ag]× Koff. The smaller the dissociation rate constant, the more tightly bound the antibody is to its antigen, or the higher the binding affinity between antibody and antigen. The equilibrium dissociation constant (KD) measures the rate at which new antibody-antigen complexes formed equals the rate at which antibody-antigen complexes dissociate at equilibrium. The equilibrium dissociation constant is expressed in M, and is defined as Koff/Kon=[Ab]×[Ag]/[Ab+Ag], where [Ab] is the molar concentration of the antibody, [Ag] is the molar concentration of the antigen, and [Ab+Ag] is the of molar concentration of the antibody-antigen complex, where all concentrations are of such components when the system is at equilibrium. The smaller the equilibrium dissociation constant, the more tightly bound the antibody is to its antigen, or the higher the binding affinity between antibody and antigen.

Thus, in an embodiment, the binding affinity of an α-SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond can have an association rate constant of, e.g., less than 1×10^5 M⁻¹ s⁻¹, less than 1×10^6 M^{-1} s⁻¹, less than 1×10^7 M^{-1} s⁻¹, or less than 1×10^8 M^{-1} s⁻¹. In another embodiment, the binding affinity of an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond can have an association rate constant of, e.g., more than $1 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$, more than $1 \times 10^6 \,\mathrm{M}^{-1}$ s^{-1} , more than $1\times10^7 M^{-1} s^{-1}$, or more than $1\times10^8 M^{-1} s^{-1}$. In other aspects, the binding affinity of an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond can have an association rate constant between $1\times10^{5}\,M^{-1}\,s^{-1}$ to $1\times10^{8}\,M^{-1}\,s^{-1},\,1\times10^{6}\,M^{-1}\,s^{-1}$ to $1\times10^{8}\,M^{-1}$ s^{-1} , $1 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ to $1 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$, or $1 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ to $1 \times 10^7 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$.

In another embodiment, the binding affinity of an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the

BoNT/A cleavage site scissile bond can have a disassociation rate constant of less than 1×10^{-3} s⁻¹, less than 1×10^{-4} s⁻¹, or less than 1×10^{-5} s⁻¹. In other aspects of this embodiment, the binding affinity of an α-SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the 5 P₁ residue of the BoNT/A cleavage site scissile bond can have a disassociation rate constant of, e.g., less than 1.0×10^{-4} s⁻¹, less than $2.0 \times 10^{-4} \text{ s}^{-1}$, less than $3.0 \times 10^{-4} \text{ s}^{-1}$, less than $4.0 \times$ 10^{-4} s^{-1} , less than $5.0 \times 10^{-4} \text{ s}^{-1}$, less than $6.0 \times 10^{-4} \text{ s}^{-1}$, less than $7.0 \times 10^{-4} \text{ s}^{-1}$, less than $8.0 \times 10^{-4} \text{ s}^{-1}$, or less than $9.0 \times$ 10⁻⁴ s⁻¹. In another embodiment, the binding affinity of an α-SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond can have a disassociation rate constant of, e.g., more than 1×10^{-3} s⁻¹, more than 1×10^{-4} s^{-1} , or more than 1×10^{-5} s⁻¹. In other aspects of this embodiment, the binding affinity of an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxylterminus at the P₁ residue of the BoNT/A cleavage site scissile bond can have a disassociation rate constant of, e.g., more 20 than 1.0×10^{-4} s⁻¹, more than 2.0×10^{-4} s⁻¹, more than 3.0×10^{-4} s⁻¹ $10^{-4} \, s^1$, more than $4.0 \times 10^{-4} \, s^{-1}$, more than $5.0 \times 10^{-4} \, s^{-1}$, more than $6.0 \times 10^{-4} \text{ s}^{-1}$, more than $7.0 \times 10^{-4} \text{ s}^{-1}$, more than $8.0 \times$ 10^{-4} s^{-1} , or more than $9.0 \times 10^{-4} \text{ s}^{-1}$.

In another embodiment, the binding affinity of an 25 α-SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond can have an equilibrium disassociation constant of less than 0.500 nM. In aspects of this embodiment, the binding affinity of an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond can have an equilibrium disassociation constant of, e.g., less than 0.500 nM, less than 0.450 nM, less than 0.400 nM, less than 0.350 nM, less than 0.300 nM, less than 35 0.250 nM, less than 0.200 nM, less than 0.150 nM, less than 0.100 nM, or less than 0.050 nM. In another embodiment, the binding affinity of an α-SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond can have 40 an equilibrium disassociation constant of more than 0.500 nM. In aspects of this embodiment, the binding affinity of an α-SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond can have an equilibrium 45 disassociation constant of, e.g., more than 0.500 nM, more than 0.450 nM, more than 0.400 nM, more than 0.350 nM, more than 0.300 nM, more than 0.250 nM, more than 0.200 nM, more than 0.150 nM, more than 0.100 nM, or more than 0.050 nM.

In yet another embodiment, the binding affinity of an $\alpha\text{-SNAP-25}$ antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond can have an association rate constant of for the intact SNAP-25 of, e.g., less than $1\times10^0~\text{M}^{-1}~\text{s}^{-1}$, less than $1\times10^1~\text{M}^{-1}~\text{s}^{-1}$, less than $1\times10^2~\text{M}^{-1}~\text{s}^{-1}$, less than $1\times10^3~\text{M}^{-1}~\text{s}^{-1}$, or less than $1\times10^4~\text{M}^{-1}~\text{s}^{-1}$. In another embodiment, the binding affinity of an $\alpha\text{-SNAP-25}$ antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage of site scissile bond can have an association rate constant of for the intact SNAP-25 of, e.g., at most $1\times10^0~\text{M}^{-1}~\text{s}^{-1}$, at most $1\times10^1~\text{M}^{-1}~\text{s}^{-1}$, at most $1\times10^3~\text{M}^{-1}~\text{s}^{-1}$, or at most $1\times10^4~\text{M}^{-1}~\text{s}^{-1}$.

Binding specificity is the ability of an antibody to discriminate between a molecule containing its epitope and a molecule that does not contain that epitope. One way to measure 22

binding specificity is to compare the Kon association rate of the antibody for a molecule containing its epitope relative to the Kon association rate of the antibody for a molecule that does not contain that epitope. For example, comparing the association rate constant (Ka) of an α-SNAP-25 antibody for a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond relative to a SNAP-25 not comprising that epitope, such as, e.g., a SNAP-25 epitope lacking a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond or a SNAP-25 epitope having an intact P₁-P₁' scissile bond of a BoNT/A cleavage site. In aspects of this embodiment, an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond has an association rate constant (Ka) for a SNAP-25 not comprising its epitope(s) of, e.g., less than $1\times10^{0} \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$, less than $1\times10^{11} \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$, less than $1\times10^{2} \,\mathrm{M}^{-1}$ $s^{-1},$ less than $1{\times}10^3~M^{-1}~s^{-1}$ or less than $1{\times}10^4~M^{-1}~s^{-1}.$ In other aspects of this embodiment, an α-SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond has an association rate constant (Ka) for a SNAP-25 not comprising its epitope(s) of, e.g., at most 1×10^{0} M^{-1} s⁻¹, at most 1×10^1 M^{-1} s⁻¹, at most 1×10^2 M^{-1} s⁻¹, at most $1 \times 10^3 \text{M}^{-1} \text{ s}^{-1}$ or at most $1 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$.

In yet aspects of this embodiment, an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond has an association rate constant (Ka) for its epitope relative to a SNAP-25 not comprising that epitope of, e.g., at least 2-fold more, at least 3-fold more, at least 4-fold more, at least 5-fold more, at least 6-fold more, at least 7-fold more, at least 8-fold more, or at least 9-fold more. In further aspects of this embodiment, an α-SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxylterminus at the P₁ residue of the BoNT/A cleavage site scissile bond has an association rate constant (Ka) for its epitope relative to a SNAP-25 not comprising that epitope of, e.g., at least 10-fold more, at least 100-fold more, at least 1.000-fold more or at least 10.000-fold more. In yet other aspects of this embodiment, an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond has an association rate constant (Ka) for its epitope relative to a SNAP-25 not comprising that epitope of, e.g., at most 1-fold more, at most 2-fold more, at most 3-fold more, at most 4-fold more, at most 5-fold more, at most 6-fold more, at most 7-fold more, at most 8-fold more, or at most 9-fold more. In yet other aspects of this embodiment, an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxylterminus at the P₁ residue of the BoNT/A cleavage site scissile bond has an association rate constant (Ka) for its epitope relative to a SNAP-25 not comprising that epitope of, e.g., at most 10-fold more, at most 100-fold more, at most 1.000-fold more or at most 10.000-fold more.

The binding specificity of an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxylterminus at the P_1 residue of the BoNT/A cleavage site scissile bond can also be characterized as a ratio that such an α -SNAP-25 antibody can discriminate its SNAP-25 epitope relative to a SNAP-25 not comprising that epitope, such as, e.g., a SNAP-25 epitope lacking a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond of a BoNT/A cleavage site. In aspects of this embodiment, an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage

site scissile bond has a binding specificity ratio for its SNAP-25 epitope relative to a SNAP-25 not comprising that epitope of, e.g., at least 2:1, at least 3:1, at least 4:1, at least 5:1, at least 64:1, at least 7:1, at least 8:1, at least 9:1, at least 10:1, at least 15:1, at least 20:1, at least 25:1, at least 30:1, at least 35:1, or 5 at least 40:1. In yet other aspects of this embodiment, an α-SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond has a binding specificity ratio for its SNAP-25 epitope relative to a SNAP-25 lacking a 10 carboxyl-terminus at the P_1^- residue of the BoNT/A cleavage site scissile bond of, e.g., at least 2:1, at least 3:1, at least 4:1, at least 5:1, at least 6:1, at least 7:1, at least 8:1, at least 9:1, at least 10:1, at least 15:1, at least 20:1, at least 25:1, at least 30:1, at least 35:1, or at least 40:1. In still other aspects of this 15 embodiment, an α-SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond has a binding specificity ratio for its SNAP-25 epitope relative to a SNAP-25 having an intake P₁—P₁' scissile bond of a 20 BoNT/A cleavage site of, e.g., at least 2:1, at least 3:1, at least 4:1, at least 5:1, at least 64:1, at least 7:1, at least 8:1, at least 9:1, at least 10:1, at least 15:1, at least 20:1, at least 25:1, at least 30:1, at least 35:1, or at least 40:1.

Binding avidity, also known as functional affinity, refers to 25 the sum total of the functional binding strength between a multivalent antibody and its antigen. Antibody molecules can have more than one binding site (e.g., 2 for IgG, 10 for IgM), and many antigens contain more than one antigenic site. While binding avidity of an antibody depends on the binding 30 affinities of the individual antibody binding sites, binding avidity is greater than the binding affinity as all the antibodyantigen interactions must be broken simultaneously for the antibody to dissociate completely. It is envisioned that an $\alpha\text{-SNAP-25}$ antibody that selectively binds to a SNAP-25 sepitope having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond can selectively bind to any and all epitopes for that antibody.

Thus, in an embodiment, an α -SNAP-25 antibody is an α-SNAP-25 antibody that selectively binds to a SNAP-25 40 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond. In aspects of this embodiment, an α-SNAP-25 antibody is an α-SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus glutamine or an α-SNAP-25 antibody that 45 selectively binds to a SNAP-25 epitope having a carboxylterminus lysine. In other aspects of this embodiment, an α -SNAP-25 antibody is an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus P₁ residue that corresponds to glutamine 197 of SEQ ID 50 NO: 5 or an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus P₁ residue that corresponds to lysine 204 of SEQ ID NO: 16. In still other aspects of this embodiment, an α -SNAP-25 antibody is an α-SNAP-25 antibody that selectively binds to a SNAP-25 55 epitope having a carboxyl-terminal amino acid sequence of SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 147 or SEQ ID NO: 60

Aspects of the present disclosure comprise, in part, an immuno-based method of detecting BoNT/A activity. The immuno-based methods disclosed in the present specification can be evaluated by several parameters including, e.g., accuracy, precision, limit of detection (LOD), limits of quantitation (LOQ), linear range, specificity, selectivity, linearity,

24

ruggedness, and system suitability. The accuracy of a method is the measure of exactness of an analytical method, or the closeness of agreement between the measured value and the value that is accepted as a conventional true value or an accepted reference value. The precision of a method is the degree of agreement among individual test results, when the procedure is applied repeatedly to multiple samplings of a homogeneous sample. As such, precision evaluates 1) within assay variability; 2) within-day variability (repeatability); and 3) between-day variability (intermediate precision); and 4) between-lab variability (reproducibility). Coefficient of variation (CV %) is a quantitative measure of precision expressed relative to the observed or theoretical mean value.

An immuno-based method disclosed in the present specification must be able to detect, over background, the presence of an $\alpha\text{-SNAP-25}$ antibody-antigen complex comprising a SNAP-25 having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond. The limit of detection (LOD) of a method refers to the concentration of analyte which gives rise to a signal that is significantly different from the negative control or blank and represents the lowest concentration of analyte that can be distinguished from background.

Thus, in an embodiment, the immuno-based method disclosed in the present specification can detect the LOD of BoNT/A at an amount that is significantly different from a negative control or blank. In aspect of this embodiment, the immuno-based method disclosed in the present specification has an LOD of, e.g., 10 ng or less, 9 ng or less, 8 ng or less, 7 ng or less, 6 ng or less, 5 ng or less, 4 ng or less, 3 ng or less, 2 ng or less, 1 ng or less of a BoNT/A. In still other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOD of, e.g., 900 pg or less, 800 pg or less, 700 pg or less, 600 pg or less, 500 pg or less, 400 pg or less, 300 pg or less, 200 pg or less, 100 pg or less of a BoNT/A. In further aspects of this embodiment, the immunobased method disclosed in the present specification has an LOD of, e.g., 90 pg or less, 80 pg or less, 70 pg or less, 60 pg or less, 50 pg or less, 40 pg or less, 30 pg or less, 20 pg or less, 10 pg or less of a BoNT/A. In other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOD of, e.g., 9 pg or less, 8 pg or less, 7 pg or less, 6 pg or less, 5 pg or less, 4 pg or less, 3 pg or less, 2 pg or less, 1 pg or less of a BoNT/A. In yet other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOD of, e.g., 0.9 pg or less, 0.8 pg or less, 0.7 pg or less, 0.6 pg or less, 0.5 pg or less, 0.4 pg or less, 0.3 pg or less, 0.2 pg or less, 0.1 pg or less of a BoNT/A.

In another aspect of this embodiment, the immuno-based method disclosed in the present specification has an LOD of, e.g., 10 nM or less or less, 9 nM or less, 8 nM or less, 7 nM or less, 6 nM or less, 5 nM or less, 4 nM or less, 3 nM or less, 2 nM or less, or 1 nM or less of a BoNT/A. In other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOD of, e.g., 900 pM or less, 800 pM or less, 700 pM or less, 600 pM or less, 500 pM or less, 400 pM or less, 300 pM or less, 200 pM or less, or 100 pM or less of a BoNT/A. In other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOD of, e.g., $100\,\mathrm{pM}$ or less, $90\,\mathrm{pM}$ or less, $80\,\mathrm{pM}$ or less, 70 pM or less, 60 pM or less, 50 pM or less, 40 pM or less, 30 pM or less, 20 pM or less, or 10 pM or less of a BoNT/A. In yet other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOD of, e.g., 10 pM or less of a BoNT/A, 9 pM or less, 8 pM or less, 7 pM or less, 6 pM or less, 5 pM or less, 4 pM or less, 3 pM or less, 2 pM or less, or 1 pM or less of a

BoNT/A. In still other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOD of, e.g., 1000 fM or less, 900 fM or less, 800 fM or less, 700 fM or less, 600 fM or less, 500 fM or less, 400 fM or less, 300 fM or less, 200 fM or less, or 100 fM or less of a 5 BoNT/A. In still other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOD of, e.g., 100 fM or less, 90 fM or less, 80 fM or less, 70 fM or less, 60 fM or less, 50 fM or less of a BoNT/A. In still other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOD of, e.g., 10 fM or less, 9 fM or less, 8 fM or less, 7 fM or less, 6 fM or less, 5 fM or less, 4 fM or less, 3 fM or less, 2 fM or less, or 1 fM or less of a botulinum neurotoxin A.

The limits of quantitation (LOQ) are the lowest and the highest concentrations of analyte in a sample or specimen that can be measured with an acceptable level of accuracy and precision. The lower limit of quantitation refers to the lowest dose that a detection method can measure consistently from 20 the background. The upper limit of quantitation is the highest dose that a detection method can measure consistently before saturation of the signal occurs. The linear range of the method is the area between the lower and the upper limits of quantitation. The linear range is calculated by subtracting lower 25 limit of quantitation from the upper limit of quantitation. As used herein, the term "signal to noise ratio for the lower asymptote" refers to the signal detected in the method at the lower limit of detection divided by the background signal. As used herein, the term "signal to noise ratio for the upper 30 asymptote" refers to the signal detected in the method at the upper limit of detection divided by the background signal.

Thus, in an embodiment, the immuno-based method disclosed in the present specification can detect the LOQ of BoNT/A at an amount that is significantly different from a 35 negative control or blank. In aspect of this embodiment, the immuno-based method disclosed in the present specification has an LOQ of, e.g., 10 ng or less, 9 ng or less, 8 ng or less, 7 ng or less, 6 ng or less, 5 ng or less, 4 ng or less, 3 ng or less, 2 ng or less, 1 ng or less of a BoNT/A. In still other aspects of 40 this embodiment, the immuno-based method disclosed in the present specification has an LOQ of, e.g., 900 pg or less, 800 pg or less, 700 pg or less, 600 pg or less, 500 pg or less, 400 pg or less, 300 pg or less, 200 pg or less, 100 pg or less of a BoNT/A. In further aspects of this embodiment, the immuno- 45 based method disclosed in the present specification has an LOQ of, e.g., 90 pg or less, 80 pg or less, 70 pg or less, 60 pg or less, 50 pg or less, 40 pg or less, 30 pg or less, 20 pg or less, 10 pg or less of a BoNT/A. In other aspects of this embodiment, the immuno-based method disclosed in the present 50 specification has an LOQ of, e.g., 9 pg or less, 8 pg or less, 7 pg or less, 6 pg or less, 5 pg or less, 4 pg or less, 3 pg or less, 2 pg or less, 1 pg or less of a BoNT/A. In yet other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOQ of, e.g., 0.9 pg or less, 0.8 pg 55 or less, 0.7 pg or less, 0.6 pg or less, 0.5 pg or less, 0.4 pg or less, 0.3 pg or less, 0.2 pg or less, 0.1 pg or less of a BoNT/A.

In another aspect of this embodiment, the immuno-based method disclosed in the present specification has an LOQ of, e.g., 10 nM or less, 9 nM or less, 8 nM or less, 7 nM or less, 60 nM or less, 5 nM or less, 4 nM or less, 3 nM or less, 2 nM or less, or 1 nM or less of a BoNT/A. In other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOQ of, e.g., 900 pM or less, 800 pM or less, 700 pM or less, 600 pM or less, 500 pM or less, 65 400 pM or less, 300 pM or less, 200 pM or less, or 100 pM or less of a BoNT/A. In other aspects of this embodiment, the

immuno-based method disclosed in the present specification has an LOQ of, e.g., 100 pM or less, 90 pM or less, 80 pM or less, 70 pM or less, 60 pM or less, 50 pM or less, 40 pM or less, 30 pM or less, 20 pM or less, or 10 pM or less of a BoNT/A. In yet other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOQ of, e.g., 10 pM or less of a BoNT/A, 9 pM or less, 8 pM or less, 7 pM or less, 6 pM or less, 5 pM or less, 4 pM or less, 3 pM or less, 2 pM or less, or 1 pM or less of a BoNT/A. In still other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOQ of, e.g., 1000 fM or less, 900 fM or less, 800 fM or less, 700 fM or less, 600 fM or less, 500 fM or less, 400 fM or less, 300 fM or less, 200 fM or less, or 100 fM or less of a BoNT/A. In still other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOQ of, e.g., 100 fM or less, 90 fM or less, 80 fM or less, 70 fM or less, 60 fM or less, 50 fM or less, 40 fM or less, 30 fM or less, 20 fM or less, or 10 fM or less of a BoNT/A. In still other aspects of this embodiment, the immuno-based method disclosed in the present specification has an LOQ of, e.g., 10 fM or less, 9 fM or less, 8 fM or less, 7 fM or less, 6 fM or less, 5 fM or less, 4 fM or less, 3 fM or less, 2 fM or less, or 1 fM or less of a BoNT/A.

An immuno-based assay useful to practice aspect of the disclosed methods must have a precision of no more than 50%. In aspects of this embodiment, an immuno-based assay has a precision of no more than 50%, no more than 40%, no more than 30%, or no more than 20%. In other aspects of this embodiment, an immuno-based assay has a precision of not more than 15%, no more than 10%, or no more than 5%. In other aspects of this embodiment, an immuno-based assay has a precision of not more than 4%, no more than 3%, no more than 2%, or no more than 1%.

An immuno-based assay useful to practice aspect of the disclosed methods must have an accuracy of at least 50%. In aspects of this embodiment, an immuno-based assay has an accuracy of at least 50%, at least 60%, at least 70%, or at least 80%. In other aspects of this embodiment, an immuno-based assay has an accuracy of at least 85%, at least 90%, or at least 95%. In other aspects of this embodiment, an immuno-based assay has an accuracy of at least 96%, at least 97%, at least 98%, or at least 99%.

An immuno-based method disclosed in the present specification must have a signal to noise ratio for the lower asymptote that is statistically significant and a signal to noise ratio for the upper asymptote that is statistically significant. In aspects of this embodiment, an immuno-based method disclosed in the present specification has a signal to noise ratio for the lower asymptote of, e.g., at least 3:1, at least 4:1, at least 5:1, at least 6:1, at least 7:1, at least 8:1, at least 9:1, at least 10:1, at least 15:1 or at least 20:1. In other aspects of this embodiment, an immuno-based method has a signal to noise ratio for the upper asymptote of, e.g., at least 10:1, at least 15:1, at least 20:1, at least 25:1, at least 30:1, at least 35:1, at least 40:1, at least 45:1, at least 50:1, at least 60:1, at least 70:1, at least 80:1, at least 90:1, or at least 100:1, at least 150:1, at least 200:1, at least 250:1, at least 300:1, at least 350:1, at least 400:1, at least 450:1, at least 500:1, at least 550:1, or at least 600:1.

The specificity of a method defines the ability of the method to measure the analyte of interest to the exclusion of other relevant components, such as, e.g., partially-active or inactive analyte. The selectivity of a method describes the ability of an analytical method to differentiate various substances in a sample. The linearity of a method is its ability to elicit results that are directly, or by a well defined mathemati-

cal transformation, proportional to the concentration of analyte in the sample. Thus in an embodiment, an immuno-based method disclosed in the present specification can distinguish a fully-active BoNT/A from a partially-active BoNT/A having, e.g., 70% or less, 60% or less, 50% or less, 40% or less, 50% or less, 40% or less, 50% or less the activity of a fully-active BoNT/A.

The ruggedness of the method is the reproducibility of the test results obtained for identical samples under normal (but variable) test conditions. Robustness of a procedure is a measure of its capacity to remain unaffected by small but deliberate variations in the method parameters and provides an indication of its reliability in normal usage. Thus, whereas ruggedness evaluates unavoidable changes, robustness evaluates deliberate changes. Typical parameters evaluated by rug- 15 gedness and robustness include the effects of freeze/thaw, incubation times, incubation temperature, longevity of reagent, sample preparation, sample storage, cell passage number, lots of toxin, variability between purifications, and variability between nicking reactions. Robustness parameters 20 for cell-based assays include the cell bank (beginning, middle and end of freeze), cell passage level, cell seeding density, cell stock density (how many days in culture), cell age in flask (waiting time to seeding), incubation time, different plates, excessive amounts of serum, and source of reagents. The 25 system suitability of the method is the determination of assay performance, including the performance of reagents and instruments, over time by analysis of a reference standard. System suitability is stressed in FDA guidance referring to the fact that equipment, electronics, assay performance, and 30 samples to be analyzed, constitute an integrated system. System suitability can be evaluated by testing for parallelism, which is when plotting the log dose versus the response, serial dilutions of the reference and serial dilutions of the samples should give rise to parallel curves.

Aspects of the present disclosure comprise, in part, a cell from an established cell line. As used herein, the term "cell" refers to any eukaryotic cell susceptible to BoNT/A intoxication by a BoNT/A or any eukaryotic cell that can uptake a BoNT/A. The term cell encompasses cells from a variety of 40 organisms, such as, e.g., murine, rat, porcine, bovine, equine, primate and human cells; from a variety of cell types such as, e.g., neuronal and non-neuronal; and can be isolated from or part of a heterogeneous cell population, tissue or organism. As used herein, the term "established cell line" is synony- 45 mous with "immortal cell line," or "transformed cell line" and refers to a cell culture of cells selected for indefinite propagation from a cell population derived from an organism, tissue, or organ source. By definition, an established cell line excludes a cell culture of primary cells. As used herein, the 50 term "primary cells" are cells harvested directly from fresh tissues or organs and do not have the potential to propagate indefinitely. An established cell line can comprise a heterogeneous population of cells or a uniform population of cells. An established cell line derived from a single cell is referred 55 to as a clonal cell line. An established cell line can be one whose cells endogenously express all component necessary for the cells to undergo the overall cellular mechanism whereby a BoNT/A proteolytically cleaves a SNAP-25 substrate and encompasses the binding of a BoNT/A to a 60 BoNT/A receptor, the internalization of the neurotoxin/receptor complex, the translocation of the BoNT/A light chain from an intracellular vesicle into the cytoplasm and the proteolytic cleavage of a SNAP-25. Alternatively, an established cell line can be one whose cells have had introduced from an 65 exogenous source at least one component necessary for the cells to undergo the overall cellular mechanism whereby a

28

BoNT/A proteolytically cleaves a SNAP-25 substrate and encompasses the binding of a BoNT/A to a BoNT/A receptor, the internalization of the neurotoxin/receptor complex, the translocation of the BoNT/A light chain from an intracellular vesicle into the cytoplasm and the proteolytic cleavage of a SNAP-25. Also refered to as a genetically-engineered cell line, cells from such an established cell line may, e.g., express an exogenous FGFR2, an exogenous FGFR3, an exogenous SV2, an exogenous SNAP-25, or any combination thereof.

Aspects of the present disclosure comprise, in part, a cell from an established cell line susceptible to BoNT/A intoxication. As used herein, the terms "cell(s) susceptible to BoNT/A intoxication," "cell(s) susceptible to BoNT/A intoxication by a BoNT/A," or "cell(s) from an established cell line susceptible to BoNT/A intoxication by a BoNT/A" refer to cell(s) that can undergo the overall cellular mechanism whereby a BoNT/A proteolytically cleaves a SNAP-25 substrate and encompasses the binding of a BoNT/A to a BoNT/A receptor, the internalization of the neurotoxin/receptor complex, the translocation of the BoNT/A light chain from an intracellular vesicle into the cytoplasm and the proteolytic cleavage of a SNAP-25. By definition, cell(s) susceptible to of BoNT/A intoxication must express, or be engineered to express, at least one BoNT/A receptor and at least one SNAP-25 substrate. As used herein, the terms "cell(s) that can uptake BoNT/A" or "cell(s) comprising an established cell line that can uptake BoNT/A" refer to cells that can undergo the overall cellular mechanism whereby a BoNT/A proteolytically cleaves a SNAP-25 substrate and encompasses the binding of a BoNT/A to a BoNT/A receptor, the internalization of the neurotoxin/receptor complex, the translocation of the BoNT/A light chain from an intracellular vesicle into the cytoplasm and the proteolytic cleavage of a SNAP-25. By definition, cell(s) that can uptake BoNT/A 35 must express, or be engineered to express, at least one BoNT/A receptor and at least one SNAP-25 substrate.

Thus in an embodiment, cells from an established cell line are susceptible to BoNT/A intoxication. In aspects of this embodiment, cells from an established cell line are susceptible to BoNT/A intoxication by, e.g., about 500 pM or less, about 400 pM or less, about 300 pM or less, about 200 pM or less, or about 100 pM or less of a BoNT/A. In other aspects of this embodiment, cells from an established cell line are susceptible to BoNT/A intoxication by, e.g., about 90 pM or less, about 80 pM or less, about 70 pM or less, about 60 pM or less, about 50 pM or less, about 40 pM or less, about 30 pM or less, about 20 pM or less A, or about 10 pM or less of a BoNT/A. In still other aspects, cells from an established cell line are susceptible to BoNT/A intoxication by, e.g., about 9 pM or less, about 8 pM or less, about 7 pM or less, about 6 pM or less, about 5 pM or less, about 4 pM or less, about 3 pM or less, about 2 pM or less, or about 1 pM or less of a BoNT/A. In yet other aspects, cells from an established cell line are susceptible to BoNT/A intoxication by, e.g., about 0.9 pM or less, about 0.8 pM or less, about 0.7 pM or less, about 0.6 pM or less, about 0.5 pM or less, about 0.4 pM or less, about 0.3 pM or less, about 0.2 pM, or about 0.1 pM or less of a BoNT/A. As used herein, the term "about" when qualifying a value of a stated item, number, percentage, or term refers to a range of plus or minus ten percent of the value of the stated item, percentage, parameter, or term.

In another embodiment, cells comprising an established cell line can uptake a BoNT/A. In aspects of this embodiment, cells comprising an established cell line can uptake, e.g., about 500 pM or less, about 400 pM or less, about 300 pM or less, about 200 pM or less of a BoNT/A. In other aspects of this embodiment, cells compris-

ing an established cell line possess the ability to uptake about 90 pM or less, about 80 pM or less, about 70 pM or less, about 60 pM or less, about 50 pM or less, about 40 pM or less, about 30 pM or less, about 20 pM or less, or about 10 pM or less of a BoNT/A. In still other aspects, cells comprising an established cell line possess the ability to uptake about 9 pM or less, about 8 pM or less, about 7 pM or less, about 6 pM or less, about 5 pM or less, about 4 pM or less, about 3 pM or less, about 2 pM or less, or about 1 pM or less of a BoNT/A. In yet other aspects, cells comprising an established cell line 10 possess the ability to uptake about 0.9 pM or less, about 0.8 pM or less, about 0.7 pM or less, about 0.6 pM or less, about 0.5 pM or less, about 0.4 pM or less, about 0.3 pM or less, about 0.2 pM or less, or about 0.1 pM or less of a BoNT/A.

Aspects of the present disclosure comprise, in part, a 15 BoNT/A. As used herein, the term "BoNT/A" is synonymous with "botulinum neurotoxin serotype A" or "botulinum neurotoxin type A" and refers to both a naturally-occurring BoNT/A or a non-naturally occurring BoNT/As thereof, and includes BoNT/A complex comprising the about 150 kDa 20 BoNT/A neurotoxin and associated non-toxin associated proteins (NAPs), as well as the about 150 kDa BoNT/A neurotoxin alone. Non-limiting examples of BoNT/A complexes include, e.g., the 900-kDa BoNT/A complex, the 500-kDa BoNT/A complex, the 500-kDa BoNT/A complex. Non-limiting examples of the about 150 kDa BoNT/A neurotoxin include, e.g., SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4.

As used herein, the term "naturally occurring BoNT/A" refers to any BoNT/A produced by a naturally-occurring 30 process, including, without limitation, BoNT/A isoforms produced from a post-translational modification, an alternatively-spliced transcript, or a spontaneous mutation, and BoNT/A subtypes, such as, e.g., a BoNT/A1 subtype, BoNT/ A2 subtype, BoNT/A3 subtype, BoNT/A4 subtype, and 35 BoNT/A5 subtype. A naturally occurring BoNT/A includes, without limitation, SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, or one that substitutes, deletes or adds, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or 40 more, 30 or more, 40 or more, 50 or more, or 100 amino acids from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, or SEQ ID NO: 4. Commercially available pharmaceutical compositions of a naturally-occurring BoNT/A includes, without limitation, BOTOX® (Allergan, Inc., Irvine, Calif.), DYS- 45 PORTTM/RELOXIN®, (Ipsen Ltd., Slough, England), PUR-TOX® (Mentor Corp., Santa Barbara, Calif.), XEOMIN® (Merz Pharmaceuticals, GmbH., Frankfurt, Germany), NEU-RONOX® (Medy-Tox, Inc., Ochang-myeon, South Korea), BTX-A.

As used herein, the term "non-naturally occurring BoNT/ A" refers to any BoNT/A whose structure was modified with the aid of human manipulation, including, without limitation, a BoNT/A with an altered amino acid sequence produced by genetic engineering using random mutagenesis or rational 55 design and a BoNT/A produced by in vitro chemical synthesis. Non-limiting examples of non-naturally occurring BoNT/As are described in, e.g., Steward, L. E. et al., Posttranslational Modifications and Clostridial Neurotoxins, U.S. Pat. No. 7,223,577; Dolly, J. O. et al., Activatable Clostridial 60 Toxins, U.S. Pat. No. 7,419,676; Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins, US 2004/0220386; Steward, L. E. et al., Modified Clostridial Toxins With Enhanced Targeting Capabilities For Endogenous Clostridial Toxin Receptor Sys- 65 tems, U.S. Patent Publication No. 2008/0096248; Steward, L. E. et al., Modified Clostridial Toxins With Altered Targeting

30

Capabilities For Clostridial Toxin Target Cells, U.S. Patent Publication No. 2008/0161543; Steward, L. E. et al., Modified Clostridial Toxins With Enhanced Translocation Capabilities and Altered Targeting Activity For Clostridial Toxin Target Cells, U.S. Patent Publication No. 2008/0241881, each of which is hereby incorporated by reference in its entirety.

Thus in an embodiment, the BoNT/A activity being detected is from a naturally occurring BoNT/A. In aspects of this embodiment, the BoNT/A activity being detected is from a BoNT/A isoform or a BoNT/A subtype. In aspects of this embodiment, the BoNT/A activity being detected is from the BoNT/A of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, or SEQ ID NO: 4. In other aspects of this embodiment, the BoNT/A activity being detected is from a BoNT/A having, e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% amino acid identity with SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, or SEQ ID NO: 4. In other aspects of this embodiment, the BoNT/A activity being detected is from BOTOX®, DYSPORT™/RELOXIN®, PURTOX®, XEOMIN®, NEURONOX®, or BTX-A.

In another embodiment, the BoNT/A activity being detected is from a non-naturally occurring BoNT/A. In other aspects of this embodiment, the BoNT/A activity being detected is from a non-naturally occurring BoNT/A variant having, e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% amino acid identity with SEQIDNO: 1, SEQIDNO: 2, SEQIDNO: 3, or SEQIDNO: 4. In other aspects of this embodiment, the BoNT/A activity being detected is from a non-naturally occurring BoNT/A variant having, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more non-contiguous amino acid substitutions, deletions, or additions relative to SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, or SEQ ID NO: 4. In yet other aspects of this embodiment, the BoNT/A activity being detected is from a non-naturally occurring BoNT/A variant having, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more contiguous amino acid substitutions, deletions, or additions relative to SEQIDNO: 1, SEQIDNO: 2, SEQIDNO: 3, or SEQIDNO:

Aspects of the present disclosure comprise, in part, a SNAP-25. As used herein, the term "SNAP-25" refers to a naturally-occurring SNAP-25 or a non-naturally occurring SNAP-25 which is preferentially cleaved by a BoNT/A. As used herein, the term "preferentially cleaved" refers to that the cleavage rate of BoNT/A substrate by a BoNT/A is at least one order of magnitude higher than the cleavage rate of any other substrate by BoNT/A. In aspects of this embodiment, the cleavage rate of BoNT/A substrate by a BoNT/A is at least two orders of magnitude higher, at least three orders of magnitude higher, at least five orders of magnitude higher then that the cleavage rate of any other substrate by BoNT/A.

As used herein, the term "naturally occurring SNAP-25" refers to any SNAP-25 produced by a naturally-occurring process, including, without limitation, SNAP-25 isoforms produced from a post-translational modification, an alternatively-spliced transcript, or a spontaneous mutation, and SNAP-25 subtypes. A naturally occurring SNAP-25 includes, without limitation, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID

NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24, or one that substitutes, deletes or adds, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more amino acids from SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24.

As used herein, the term "non-naturally occurring SNAP-25" refers to any SNAP-25 whose structure was modified with the aid of human manipulation, including, without limi- 15 tation, a SNAP-25 produced by genetic engineering using random mutagenesis or rational design and a SNAP-25 produced by in vitro chemical synthesis. Non-limiting examples of non-naturally occurring SNAP-25s are described in, e.g., Steward, L. E. et al., FRET Protease Assays for Clostridial 20 Toxins, U.S. Pat. No. 7,332,567; Fernandez-Salas et al., Lipophilic Dye-based FRET Assays for Clostridia! Toxin Activity, U.S. Patent Publication 2008/0160561, each of which is hereby incorporated by reference in its entirety. A non-naturally occurring SNAP-25 may substitute, delete or add, e.g., 1 25 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more amino acids from SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ 30 ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24.

Thus in an embodiment, a SNAP-25 is a naturally occur- 35 ring SNAP-25. In aspects of this embodiment, the SNAP-25 is a SNAP-25 isoform or a SNAP-25 subtype. In aspects of this embodiment, the naturally occurring SNAP-25 is the naturally occurring SNAP-25 of SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 40 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24. In other aspects of this embodiment, the SNAP-25 is a natu- 45 rally occurring SNAP-25 having, e.g., at least 70% amino acid identity, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% amino acid identity with SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID 50 NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24.

In another embodiment, a SNAP-25 is a non-naturally 55 occurring SNAP-25. In other aspects of this embodiment, the SNAP-25 is a non-naturally occurring SNAP-25 having, e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% amino acid identity with SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, or SEQ ID NO: 4. In other 60 aspects of this embodiment, the SNAP-25 is a non-naturally occurring SNAP-25 having, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more non-contiguous amino acid substitutions, deletions, or additions relative to SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ

32

ID NO: 10, SEO ID NO: 11, SEO ID NO: 12, SEO ID NO: 13. SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24. In yet other aspects of this embodiment, the SNAP-25 is a non-naturally occurring SNAP-25 having, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more contiguous amino acid substitutions, deletions, or additions relative to SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24.

A SNAP-25 can be an endogenous SNAP-25 or an exogenous SNAP-25. As used herein, the term "endogenous SNAP-25" refers to a SNAP-25 naturally present in the cell because it is naturally encoded within the cell's genome, such that the cell inherently expresses the SNAP-25 without the need an external source of SNAP-25 or an external source of genetic material encoding a SNAP-25. The expression of an endogenous SNAP-25 may be with or without environmental stimulation such as, e.g., cell differentiation. By definition, an endogenous SNAP-25 can only be a naturally-occurring SNAP-25 or variants thereof. For example, the following established cell lines express an endogenous SNAP-25: BE(2)-M17, Kelly, LAI-55n, N1E-115, N4TG3, N18, Neuro-2a, NG108-15, PC12, SH-SY5Y, SiMa, and SK-N-BE (2)-C.

As used herein, the term "exogenous SNAP-25" refers to a SNAP-25 expressed in a cell through the introduction of an external source of SNAP-25 or an external source of genetic material encoding a SNAP-25 by human manipulation. The expression of an exogenous SNAP-25 may be with or without environmental stimulation such as, e.g., cell differentiation. As a non-limiting example, cells from an established cell line can express an exogenous SNAP-25 by transient or stably transfection of a SNAP-25. As another non-limiting example, cells from an established cell line can express an exogenous SNAP-25 by protein transfection of a SNAP-25. An exogenous SNAP-25 can be a naturally-occurring SNAP-25 or variants thereof, or a non-naturally occurring SNAP-25 or variants thereof.

Thus in an embodiment, cells from an established cell line express an endogenous SNAP-25. In aspects of this embodiment, the endogenous SNAP-25 expressed by cells from an established cell line is a naturally-occurring SNAP-25. In other aspects of this embodiment, the endogenous SNAP-25 expressed by cells from an established cell line is SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24. In yet aspects of this embodiment, the endogenous SNAP-25 expressed by cells from an established cell line is a naturally occurring SNAP-25, such as, e.g., a SNAP-25 isoform or a SNAP-25 subtype. In other aspects of this embodiment, the endogenous SNAP-25 expressed by cells from an established cell line is a naturally occurring SNAP-25 having, e.g., at least 70% amino acid identity, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% amino acid identity with SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13,

SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24.

In another embodiment, cells from an established cell line 5 are transiently or stably engineered to express an exogenous SNAP-25. In an aspect of this embodiment, cells from an established cell line are transiently or stably engineered to express a naturally-occurring SNAP-25. In other aspects of this embodiment, cells from an established cell line are transiently or stably engineered to express the naturally-occurring SNAP-25 of SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID 15 NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24. In yet other aspects of this embodiment, cells from an established cell line are transiently or stably engineered to express a naturally occurring SNAP-25, such as, e.g., a SNAP-25 iso- 20 form or a SNAP-25 subtype. In still other aspects of this embodiment, cells from an established cell line are transiently or stably engineered to express a naturally occurring SNAP-25 having, e.g., at least 70% amino acid identity, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% amino 25 acid identity with SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, 30 SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24.

In another aspect of the embodiment, cells from an established cell line are transiently or stably engineered to express a non-naturally occurring SNAP-25. In other aspects of this or stably engineered to express a non-naturally occurring SNAP-25 having, e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% amino acid identity with SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 40 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24. In other aspects of this embodiment, cells from an established cell line are 45 transiently or stably engineered to express a non-naturally occurring SNAP-25 having, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more non-contiguous amino acid substi- 50 tutions, deletions, or additions relative to SEQ ID NO: 5, SEQ IDNO: 6, SEQ IDNO: 7, SEQ IDNO: 8, SEQ IDNO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, 55 SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24. In yet other aspects of this embodiment, cells from an established cell line are transiently or stably engineered to express a non-naturally occurring SNAP-25 having, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 60 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more contiguous amino acid substitutions, deletions, or additions relative to SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID 65 NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID

34

NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24.

Assays that detect the cleavage of a BoNT/A substrate after exposure to a BoNT/A can be used to assess whether a cell is expressing an endogenous or exogenous SNAP-25. In these assays, generation of a SNAP-25 cleavage-product would be detected in cells expressing a SNAP-25 after BoNT/A treatment. Non-limiting examples of specific Western blot analysis, as well as well-characterized reagents, conditions and protocols are readily available from commercial vendors that include, without limitation, Amersham Biosciences, Piscataway, N.J.; Bio-Rad Laboratories, Hercules, Calif.; Pierce Biotechnology, Inc., Rockford, Ill.; Promega Corporation, Madison, Wis., and Stratagene, Inc., La Jolla, Calif. It is understood that these and similar assays for SNAP-25 cleavage can be useful in identifying cells expressing an endogenous or an exogenous SNAP-25.

As non-limiting examples, Western blot analysis using an antibody that recognizes BoNT/A SNAP-25-cleaved product or both the cleaved and uncleaved forms of SNAP-25 can be used to assay for uptake of BoNT/A. Examples of α -SNAP-25 antibodies useful for these assays include, without limitation, a-SNAP-25 mouse monoclonal antibody SMI-81 (Sternberger Monoclonals Inc., Lutherville, Md.), mouse α-SNAP-25 monoclonal antibody CI 71.1 (Synaptic Systems, Goettingen, Germany), α-SNAP-25 mouse monoclonal antibody CI 71.2 (Synaptic Systems, Goettingen, Germany), α-SNAP-25 mouse monoclonal antibody SP12 (Abcam, Cambridge, Mass.), α-SNAP-25 rabbit polyclonal antiserum (Synaptic Systems, Goettingen, Germany), α-SNAP-25 rabbit polyclonal antiserum (Abcam, Cambridge, Mass.), and α -SNAP-25 rabbit polyclonal antiserum S9684 (Sigma, St Louis, Mo.).

Aspects of the present disclosure comprise, in part, a embodiment, cells from an established cell line are transiently 35 BoNT/A receptor. As used herein, the term "BoNT/A receptor" refers to either a naturally-occurring BoNT/A receptor or a non-naturally occurring BoNT/A receptor which preferentially interacts with BoNT/A in a manner that elicits a BoNT/A intoxication response. As used herein, the term "preferentially interacts" refers to that the equilibrium dissociation constant (KD) of BoNT/A for a BoNT/A receptor is at least one order of magnitude less than that of BoNT/A for any other receptor at the cell surface. The equilibrium dissociation constant, a specific type of equilibrium constant that measures the propensity of an BoNT/A-BoNT/A receptor complex to separate (dissociate) reversibly into its component molecules, namely the BoNT/A and the BoNT/A receptor, is defined as KD=Ka/Kd at equilibrium. The association constant (Ka) is defined as Ka=[C]/[L][R] and the disassociation constant (Kd) is defined as Kd=[L][R]/[C], where [L] equals the molar concentration of BoNT/A, [R] is the molar concentration of a BoNT/A receptor, and [C] is the molar concentration of the BoNT/A-BoNT/A receptor complex, and where all concentrations are of such components when the system is at equilibrium. The smaller the dissociation constant, the more tightly bound the BoNT/A is to its receptor, or the higher the binding affinity between BoNT/A and BoNT/A receptor. In aspects of this embodiment, the disassociation constant of BoNT/A for a BoNT/A receptor is at least two orders of magnitude less, at least three orders of magnitude less, at least four orders of magnitude less, or at least five orders of magnitude less than that of BoNT/A for any other receptor. In other aspects of this embodiment, the binding affinity of a BoNT/A that preferentially interacts with a BoNT/A receptor can have an equilibrium disassociation constant (KD) of, e.g., of 500 nM or less, 400 nM or less, 300 nM or less, 200 nM, or less 100 nM or less. In other aspects of

this embodiment, the binding affinity of a BoNT/A that preferentially interacts with a BoNT/A receptor can have an equilibrium disassociation constant (KD) of, e.g., of 90 nM or less, 80 nM or less, 70 nM or less, 60 nM, 50 nM or less, 40 nM or less, 30 nM or less, 20 nM, or less 10 nM or less. As used herein, the term "elicits a BoNT/A intoxication response" refers to the ability of a BoNT/A receptor to interact with a BoNT/A to form a neurotoxin/receptor complex and the subsequent internalization of that complex into the cell cytoplasm.

As used herein, the term "naturally occurring BoNT/A receptor" refers to any BoNT/A receptor produced by a naturally-occurring process, including, without limitation, BoNT/A receptor isoforms produced from a post-translational modification, an alternatively-spliced transcript, or a 15 spontaneous mutation, and BoNT/A receptor subtypes. A naturally occurring BoNT/A receptor includes, without limitation, a fibroblast growth factor receptor 2 (FGFR2), a fibroblast growth factor receptor 3 (FGFR3), a synaptic vesicle glycoprotein 2 (SV2), and a complex ganglioside like GT1b, 20 such as those described in Ester Fernandez-Salas, et al., Botulinum Toxin Screening Assays, U.S. Patent Publication 2008/ 0003240; Ester Fernandez-Salas, et al., Botulinum Toxin Screening Assays, U.S. Patent Publication 2008/0182799; Min Dong et al., SV2 is the Protein Receptor for Botulinum 25 Neurotoxin A, Science (2006); S. Mahrhold et al, The Synaptic Vesicle Protein 2C Mediates the Uptake of Botulinum Neurotoxin A into Phrenic Nerves, 580(8) FEBS Lett. 2011-2014 (2006), each of which is hereby incorporated by reference in its entirety. A naturally occurring FGFR2 includes, 30 without limitation, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, and SEQ ID NO: 70, or one that substitutes, deletes or adds, e.g., 1 or more, 2 or more, 3 or 35 more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more amino acids from SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, 40 SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, and SEQ ID NO: 70. A naturally occurring FGFR3 includes, without limitation, SEQ ID NO: 25, SEQ ID NO: 26, and SEQ ID NO: 27, or one that substitutes, deletes or adds, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 45 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more amino acids from SEO ID NO: 25, SEQ ID NO: 26, and SEQ ID NO: 27. A naturally occurring SV2 includes, without limitation, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, and SEQ ID NO: 31, or one 50 that substitutes, deletes or adds, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more amino acids from SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, and SEQ ID NO: 31.

As used herein, the term "non-naturally occurring BoNT/A receptor variant" refers to any BoNT/A receptor produced with the aid of human manipulation or design, including, without limitation, a BoNT/A receptor produced by genetic engineering using random mutagenesis or rational design and 60 a BoNT/A receptor produced by chemical synthesis. Non-limiting examples of non-naturally occurring BoNT/A variants include, e.g., conservative BoNT/A receptor variants, non-conservative BoNT/A receptor variants, BoNT/A receptor chimeric variants and active BoNT/A receptor fragments. 65

As used herein, the term "non-naturally occurring BoNT/A receptor" refers to any BoNT/A receptor whose structure was

36

modified with the aid of human manipulation, including, without limitation, a BoNT/A receptor produced by genetic engineering using random mutagenesis or rational design and a BoNT/A receptor produced by in vitro chemical synthesis. Non-limiting examples of non-naturally occurring BoNT/A receptors are described in, e.g., Ester Fernandez-Salas, et al., Botulinum Toxin Screening Assays, U.S. Patent Publication 2008/0003240; Ester Fernandez-Salas, et al., Botulinum Toxin Screening Assays, U.S. Patent Publication 2008/ 0182799, each of which is hereby incorporated by reference in its entirety. A non-naturally occurring BoNT/A receptor may substitute, delete or add, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more amino acids from SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, or SEQ ID

Thus in an embodiment, a BoNT/A receptor is a naturally occurring BoNT/A receptor such as, e.g., FGFR2, FGFR3 or SV2. In aspects of this embodiment, the BoNT/A receptor is a BoNT/A receptor isoform or a BoNT/A receptor subtype. In aspects of this embodiment, the naturally occurring BoNT/A receptor is the naturally occurring BoNT/A receptor of SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, or SEQ ID NO: 70. In other aspects of this embodiment, the BoNT/A receptor is a naturally occurring BoNT/A receptor having, e.g., at least 70% amino acid identity, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% amino acid identity with SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, or SEQ ID NO: 70.

In another embodiment, a BoNT/A receptor is a non-naturally occurring BoNT/A receptor, such as, e.g., a geneticallyengineered FGFR2, a genetically-engineered FGFR3, or a genetically-engineered SV2. In other aspects of this embodiment, the BoNT/A receptor is a non-naturally occurring BoNT/A receptor having, e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% amino acid identity with SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID 55 NO: 68, SEQ ID NO: 69, or SEQ ID NO: 70. In other aspects of this embodiment, the BoNT/A receptor is a non-naturally occurring BoNT/A receptor having, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more non-contiguous amino acid substitutions, deletions, or additions relative to SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, or SEQ ID NO: 70. In yet other aspects of this embodiment, the

BoNT/A receptor is a non-naturally occurring BoNT/A receptor having, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more contiguous amino acid substitutions, deletions, or additions relative to SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, 10 SEQ ID NO: 68, SEQ ID NO: 69, or SEQ ID NO: 70.

A BoNT/A receptor can be an endogenous BoNT/A receptor or an exogenous BoNT/A receptor. As used herein, the term "endogenous BoNT/A receptor" refers to a BoNT/A receptor naturally present in the cell because it is naturally 15 encoded within the cell's genome, such that the cell inherently expresses the BoNT/A receptor without the need an external source of BoNT/A receptor or an external source of genetic material encoding a BoNT/A receptor. Expression of an endogenous BoNT/A receptor may be with or without 20 environmental stimulation such as e.g., cell differentiation or promoter activation. For example, the following established cell lines express at least one endogenous BoNT/A receptor: BE(2)-M17, Kelly, LA1-55n, N1E-115, N4TG3, N18, Neuro-2a, NG108-15, PC12, SH-SY5Y, SiMa, and SK-N-BE 25 (2)-C. An endogenous BoNT/A receptor can only be a naturally-occurring BoNT/A receptor or naturally-occurring variants thereof.

As used herein, the term "exogenous BoNT/A receptor" refers to a BoNT/A receptor expressed in a cell through the 30 introduction of an external source of BoNT/A receptor or an external source of genetic material encoding a BoNT/A receptor by human manipulation. The expression of an exogenous BoNT/A receptor may be with or without environmental stimulation such as, e.g., cell differentiation or promoter 35 activation. As a non-limiting example, cells from an established cell line can express one or more exogenous BoNT/A receptors by transient or stably transfection of a polynucleotide molecule encoding a BoNT/A receptor, such as, e.g., a FGFR2, a FGFR3, or a SV2. As another non-limiting 40 example, cells from an established cell line can express one or more exogenous BoNT/A receptors by protein transfection of the BoNT/A receptors, such as, e.g., a FGFR2, a FGFR3, or a SV2. An exogenous BoNT/A receptor can be a naturallyoccurring BoNT/A receptor or naturally occurring variants 45 thereof, or non-naturally occurring BoNT/A receptor or nonnaturally occurring variants thereof.

Thus in an embodiment, cells from an established cell line express an endogenous BoNT/A receptor. In aspects of this embodiment, the endogenous BoNT/A receptor expressed by 50 cells from an established cell line is a naturally-occurring BoNT/A receptor. In other aspects of this embodiment, the endogenous BoNT/A receptor expressed by cells from an established cell line is SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, 55 SEQ ID NO: 31, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, or SEQ ID NO: 70. In yet aspects of this embodiment, the endogenous BoNT/A receptor 60 expressed by cells from an established cell line is a naturally occurring BoNT/A receptor, such as, e.g., a BoNT/A receptor isoform or a BoNT/A receptor subtype. In other aspects of this embodiment, the endogenous BoNT/A receptor expressed by cells from an established cell line is a naturally 65 occurring BoNT/A receptor having, e.g., at least 70% amino acid identity, at least 75%, at least 80%, at least 85%, at least

38

90%, or at least 95% amino acid identity with SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, or SEQ ID NO: 70

In another embodiment, cells from an established cell line are transiently or stably engineered to express an exogenous BoNT/A receptor. In an aspect of this embodiment, cells from an established cell line are transiently or stably engineered to express a naturally-occurring BoNT/A receptor. In other aspects of this embodiment, cells from an established cell line are transiently or stably engineered to express the naturallyoccurring BoNT/A receptor of SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, or SEQ ID NO: 70. In yet other aspects of this embodiment, cells from an established cell line are transiently or stably engineered to express a naturally occurring BoNT/A receptor, such as, e.g., a BoNT/A receptor isoform or a BoNT/A receptor subtype. In still other aspects of this embodiment, cells from an established cell line are transiently or stably engineered to express a naturally occurring BoNT/A receptor having, e.g., at least 70% amino acid identity, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% amino acid identity with SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, or SEQ ID NO: 70.

In another aspect of the embodiment, cells from an established cell line are transiently or stably engineered to express a non-naturally occurring BoNT/A receptor. In other aspects of this embodiment, cells from an established cell line are transiently or stably engineered to express a non-naturally occurring BoNT/A receptor having, e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% amino acid identity with SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEO ID NO: 65, SEO ID NO: 66, SEO ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, or SEQ ID NO: 70. In other aspects of this embodiment, cells from an established cell line are transiently or stably engineered to express a non-naturally occurring BoNT/A receptor having, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more non-contiguous amino acid substitutions, deletions, or additions relative to SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, or SEQ ID NO: 70. In yet other aspects of this embodiment, cells from an established cell line are transiently or stably engineered to express a non-naturally occurring BoNT/A receptor having, e.g., 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or 100 or more contiguous amino acid substitutions, deletions, or addi-

tions relative to SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID 5 NO: 68, SEQ ID NO: 69, or SEQ ID NO: 70.

In another embodiment, cells from an established cell line are transiently or stably engineered to express an exogenous FGFR2, an exogenous FGFR3, an exogenous SV2, or any combination thereof. In aspects of this embodiment, cells from an established cell line are transiently or stably engineered to express a naturally-occurring FGFR2, a naturallyoccurring FGFR3, a naturally-occurring SV2, or any combination thereof. In yet other aspects of this embodiment, cells from an established cell line are transiently or stably engineered to express a non-naturally-occurring FGFR2, a nonnaturally-occurring FGFR3, a non-naturally-occurring SV2, or any combination thereof. In still other aspects of this embodiment, cells from an established cell line are transiently 20 or stably engineered to express either a naturally-occurring FGFR2 or a non-naturally-occurring FGFR2, a naturallyoccurring FGFR3 or a non-naturally-occurring FGFR3, a naturally-occurring SV2 or a non-naturally-occurring SV2, or any combination thereof.

Cells that express one or more endogenous or exogenous BoNT/A receptors can be identified by routine methods including direct and indirect assays for toxin uptake. Assays that determine BoNT/A binding or uptake properties can be used to assess whether a cell is expressing a BoNT/A recep- 30 tor. Such assays include, without limitation, cross-linking assays using labeled BoNT/A, such as, e.g., [1251] BoNT/A, [125I], see, e.g., Noriko Yokosawa et al., Binding of Clostridium botulinum type C neurotoxin to different neuroblastoma cell lines, 57(1) Infect. Immun. 272-277 (1989); 35 Noriko Yokosawa et al., Binding of botulinum type CI, D and E neurotoxins to neuronal cell lines and synaptosomes, 29(2) Toxicon 261-264 (1991); and Tei-ichi Nishiki et al., Identification of protein receptor for Clostridium botulinum type B 10498-10503 (1994). Other non-limiting assays include immunocytochemical assays that detect BoNT/A binding using labeled or unlabeled antibodies, see, e.g., Atsushi Nishikawa et al., The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 45 cells, 319(2) Biochem. Biophys. Res. Commun. 327-333 (2004) and immunoprecipitation assays, see, e.g., Yukako Fujinaga et al., Molecular characterization of binding subcomponents of Clostridium botulinum type C progenitor toxin for intestinal epithelial cells and erythrocytes, 150(Pt 5) 50 Microbiology 1529-1538 (2004), that detect bound toxin using labeled or unlabeled antibodies. Antibodies useful for these assays include, without limitation, antibodies selected against BoNT/A, antibodies selected against a BoNT/A receptor, such as, e.g., FGFR2, FGFR3, or SV2, and/or anti-55 bodies selected against a ganglioside, such as, e.g., GD1a, GD1b, GD3, GQ1b, or GT1b. If the antibody is labeled, the binding of the molecule can be detected by various means, including Western blot analysis, direct microscopic observation of the cellular location of the antibody, measurement of 60 cell or substrate-bound antibody following a wash step, flow cytometry, electrophoresis or capillary electrophoresis, employing techniques well-known to those of skill in the art. If the antibody is unlabeled, one may employ a labeled secondary antibody for indirect detection of the bound molecule, 65 and detection can proceed as for a labeled antibody. It is understood that these and similar assays that determine

40

BoNT/A uptake properties or characteristics can be useful in identifying cells expressing endogenous or exogenous or BoNT/A receptors.

Assays that monitor the release of a molecule after exposure to BoNT/A can also be used to assess whether a cell is expressing one or more endogenous or exogenous BoNT/A receptors. In these assays, inhibition of the molecule's release would occur in cells expressing a BoNT/A receptor after BoNT/A treatment. Well known assays include methods that measure inhibition of radio-labeled catecholamine release from neurons, such as, e.g., [3H] noradrenaline or [3H] dopamine release, see e.g., A Fassio et al., Evidence for calcium-dependent vesicular transmitter release insensitive to tetanus toxin and botulinum toxin type F, 90(3) Neuroscience 893-902 (1999); and Sara Stigliani et al., The sensitivity of catecholamine release to botulinum toxin C1 and E suggests selective targeting of vesicles set into the readily releasable pool, 85(2) J. Neurochem. 409-421 (2003), or measures catecholamine release using a fluorometric procedure, see, e.g., Anton de Paiva et al., A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ectoacceptors and inhibits transmitter release intracellularly, 268(28) J. Biol. Chem. 20838-20844 (1993); Gary W. Lawrence et al., Distinct exocytotic responses of intact and permeabilised chromaffin cells after cleavage of the 25-kDa synaptosomal-associated protein (SNAP-25) or synaptobrevin by botulinum toxin A or B, 236(3) Eur. J. Biochem. 877-886 (1996); and Patrick Foran et al., Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release, 35(8) Biochemistry 2630-2636 (1996). Other non-limiting examples include assays that measure inhibition of hormone release from endocrine cells, such as, e.g., anterior pituitary cells or ovarian cells. It is understood that these and similar assays for molecule release can be useful in identifying cells expressing endogenous or exogenous or BoNT/A receptors.

Assays that detect the cleavage of a BoNT/A substrate after neurotoxin in rat brain synaptosomes, 269(14) J. Biol. Chem. 40 exposure to a BoNT/A can also be used to assess whether a cell is expressing one or more endogenous or exogenous BoNT/A receptors. In these assays, generation of a BoNT/A substrate cleavage-product, or disappearance of the intact BoNT/A substrate, would be detected in cells expressing a BoNT/A receptor after BoNT/A treatment. Non-limiting examples of specific Western blot analysis, as well as wellcharacterized reagents, conditions and protocols are readily available from commercial vendors that include, without limitation, Amersham Biosciences, Piscataway, N.J.; Bio-Rad Laboratories, Hercules, Calif.; Pierce Biotechnology, Inc., Rockford, Ill.; Promega Corporation, Madison, Wis., and Stratagene, Inc., La Jolla, Calif. It is understood that these and similar assays for BoNT/A substrate cleavage can be useful in identifying cells expressing endogenous or exogenous BoNT/A receptors.

As non-limiting examples, Western blot analysis using an antibody that recognizes BoNT/A SNAP-25-cleaved product or both the cleaved and uncleaved forms of SNAP-25 can be used to assay for uptake of BoNT/A. Examples of α -SNAP-25 antibodies useful for these assays include, without limitation, SMI-81 \alpha-SNAP-25 mouse monoclonal antibody (Sternberger Monoclonals Inc., Lutherville, Md.), CI 71.1 mouse α-SNAP-25 monoclonal antibody (Synaptic Systems, Goettingen, Germany), CI 71.2 α-SNAP-25 mouse monoclonal antibody (Synaptic Systems, Goettingen, Germany), SP12 α-SNAP-25 mouse monoclonal antibody (Abcam, Cambridge, Mass.), α-SNAP-25 rabbit polyclonal antiserum

(Synaptic Systems, Goettingen, Germany), α -SNAP-25 rabbit polyclonal antiserum S9684 (Sigma, St. Louis, Mo.), and α -SNAP-25 rabbit polyclonal antiserum (Abcam, Cambridge, Mass.).

Aspects of the present disclosure provide cells that through 5 genetic manipulation or recombinant engineering are made to expresses an exogenous SNAP-25 and/or one or more exogenous BoNT/A receptors. Cells useful to express an exogenous SNAP-25 and/or one or more exogenous BoNT/A receptors through genetic manipulation or recombinant engi- 10 neering include neuronal cells and non-neuronal cells that may or may not express an endogenous SNAP-25 and/or one or more endogenous BoNT/A receptors. It is further understood that such genetically manipulated or recombinantly engineered cells may express an exogenous SNAP-25 and 15 one or more exogenous BoNT/A receptors under control of a constitutive, tissue-specific, cell-specific or inducible promoter element, enhancer element or both. It is understood that any cell is useful as long as the cell can be genetically manipulated or recombinantly engineered to expresses an exogenous 20 SNAP-25 and/or one or more exogenous BoNT/A receptors and is capable of undergoing BoNT/A intoxication.

Methods useful for introducing into a cell an exogenous polynucleotide molecule encoding a component necessary for the cells to undergo the overall cellular mechanism 25 whereby a BoNT/A proteolytically cleaves a SNAP-25 substrate, such as, e.g., a SNAP-25, a FGFR2, a FGFR3, or a SV2, include, without limitation, chemical-mediated delivery methods, such as, e.g., calcium phosphate-mediated, diethyl-aminoethyl (DEAE) dextran-mediated, lipid-medi- 30 ated, polyethyleneimine (PEI)-mediated, polylysine-mediated and polybrene-mediated; physical-mediated delivery methods, such as, e.g., biolistic particle delivery, microinjection, protoplast fusion and electroporation; and viral-mediated delivery methods, such as, e.g., retroviral-mediated 35 transfection, see e.g., Introducing Cloned Genes into Cultured Mammalian Cells, pp. 16.1-16.62 (Sambrook & Russell, eds., Molecular Cloning A Laboratory Manual, Vol. 3, 3rd ed. 2001); Alessia Colosimo et al., Transfer and Expression of Foreign Genes in Mammalian Cells, 29(2) Biotech- 40 niques 314-318, 320-322, 324 (2000); Philip Washbourne & A. Kimberley McAllister, Techniques for Gene Transfer into Neurons, 12(5) Curr. Opin. Neurobiol. 566-573 (2002); and Current Protocols in Molecular Biology, John Wiley and Sons, pp 9.16.4-9.16.11 (2000), each of which is incorporated 45 by reference in its entirety. One skilled in the art understands that selection of a specific method to introduce a polynucleotide molecule into a cell will depend, in part, on whether the cell will transiently or stably contain a component necessary for the cells to undergo the overall cellular mechanism 50 whereby a BoNT/A proteolytically cleaves a SNAP-25 substrate. Non-limiting examples of polynucleotide molecule encoding a component necessary for the cells to undergo the overall cellular mechanism whereby a BoNT/A proteolytically cleaves a SNAP-25 substrate as follows: FGFR2 poly-55 nucleotide molecule of SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 132, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, or SEQ ID NO: 138; FGFR3 polynucleotide molecule of SEQ ID NO: 139, SEQ ID NO: 140, or SEQ ID NO: 141; SV2 polynucle- 60 otide molecule of SEQ ID NO: 142, SEQ ID NO: 143, or SEQ ID NO: 144; and SNAP-25 polynucleotide molecule of SEQ ID NO: 145, or SEQ ID NO: 146.

Chemical-mediated delivery methods are well-known to a person of ordinary skill in the art and are described in, e.g., 65 Martin Jordan & Florian Wurm, Transfection of Adherent and Suspended Cells by Calcium Phosphate, 33(2) Methods 136-

42

143 (2004); Chun Zhang et al., Polyethylenimine Strategies for Plasmid Delivery to Brain-Derived Cells, 33(2) Methods 144-150 (2004), each of which is hereby incorporated by reference in its entirety. Such chemical-mediated delivery methods can be prepared by standard procedures and are commercially available, see, e.g., CellPhect Transfection Kit (Amersham Biosciences, Piscataway, N.J.); Mammalian Transfection Kit, Calcium phosphate and DEAE Dextran, (Stratagene, Inc., La Jolla, Calif.); LipofectaminenTM Transfection Reagent (Invitrogen, Inc., Carlsbad, Calif.); ExGen 500 Transfection kit (Fermentas, Inc., Hanover, Md.), and SuperFect and Effectene Transfection Kits (Qiagen, Inc., Valencia, Calif.).

Physical-mediated delivery methods are well-known to a person of ordinary skill in the art and are described in, e.g., Jeike E. Biewenga et al., *Plasmid-Mediated Gene Transfer in Neurons using the Biolistics Technique*, 71(1) J. Neurosci. Methods. 67-75 (1997); John O'Brien & Sarah C. R. Lummis, *Biolistic and Diolistic Transfection: Using the Gene Gun to Deliver DNA and Lipophilic Dyes into Mammalian Cells*, 33(2) Methods 121-125 (2004); M. Golzio et al., *In Vitro and In Vivo Electric Field-Mediated Permeabilization, Gene Transfer, and Expression*, 33(2) Methods 126-135 (2004); and Oliver Gresch et al., *New Non-Viral Method for Gene Transfer into Primary Cells*, 33(2) Methods 151-163 (2004), each of which is hereby incorporated by reference in its entirety.

Viral-mediated delivery methods are well-known to a person of ordinary skill in the art and are described in, e.g., Chooi M. Lai et al., Adenovirus and Adeno-Associated Virus Vectors, 21(12) DNA Cell Biol. 895-913 (2002); Ilya Frolov et al., Alphavirus-Based Expression Vectors: Strategies and Applications, 93(21) Proc. Natl. Acad. Sci. U.S.A. 11371-11377 (1996); Roland Wolkowicz et al., Lentiviral Vectors for the Delivery of DNA into Mammalian Cells, 246 Methods Mol. Biol. 391-411 (2004); A. Huser & C. Hofmann, Baculovirus Vectors: Novel Mammalian Cell Gene-Delivery Vehicles and Their Applications, 3(1) Am. J. Pharmacogenomics 53-63 (2003); Tiziana Tonini et al., Transient Production of Retroviral- and Lentiviral-Based Vectors for the Transduction of Mammalian Cells, 285 Methods Mol. Biol. 141-148 (2004); Manfred Gossen & Hermann Bujard, Tight Control of Gene Expression in Eukaryotic Cells by Tetracycline-Responsive Promoters, U.S. Pat. No. 5,464,758; Hermann Bujard & Manfred Gossen, Methods for Regulating Gene Expression, U.S. Pat. No. 5,814,618; David S. Hogness, Polynucleotides Encoding Insect Steroid Hormone Receptor Polypeptides and Cells Transformed With Same, U.S. Pat, No. 5,514,578; David S. Hogness, Polynucleotide Encoding Insect Ecdysone Receptor, U.S. Pat. No. 6,245,531; Elisabetta Vegeto et al., Progesterone Receptor Having C. Terminal Hormone Binding Domain Truncations, U.S. Pat. No. 5,364,791; Elisabetta Vegeta et al., Mutated Steroid Hormone Receptors, Methods for Their Use and Molecular Switch for Gene Therapy, U.S. Pat. No. 5,874,534, each of which is hereby incorporated by reference in its entirety. Such viralmediated delivery methods can be prepared by standard procedures and are commercially available, see, e.g., ViraPowerTM Adenoviral Expression System (Invitrogen, Inc., Carlsbad, Calif.) and ViraPowerTM Adenoviral Expression System Instruction Manual 25-0543 version A, Invitrogen, Inc., (Jul. 15, 2002); and AdEasy™ Adenoviral Vector System (Stratagene, Inc., La Jolla, Calif.) and AdEasy™ Adenoviral Vector System Instruction Manual 064004f, Stratagene, Inc. Furthermore, such viral delivery systems can be prepared by standard methods and are commercially available, see, e.g., BDTM Tet-Off and Tet-On Gene Expression

Systems (BD Biosciences Clontech, Palo Alto, Calif.) and BDTM Tet-Off and Tet-On Gene Expression Systems User Manual, PT3001-1, BD Biosciences Glegete Clontech, (Mar. 14, 2003), GeneSwitchTM System (Invitrogen, Inc., Carlsbad, Calif.) and GeneSwitchTM System A Mifepristone-Regulated 5 Expression System for Mammalian Cells version D, 25-0313, Invitrogen, Inc., (Nov. 4, 2002); ViraPowerTM Lentiviral Expression System (Invitrogen, Inc., Carlsbad, Calif.) and ViraPowerTM Lentiviral Expression System Instruction Manual 25-0501 version E, Invitrogen, Inc., (Dec. 8, 2003); 10 and Complete Control® Retroviral Inducible Mammalian Expression System (Stratagene, La Jolla, Calif.) and Complete Control® Retroviral Inducible Mammalian Expression System Instruction Manual, 064005e.

Thus, in an embodiment, cells from an established cell line 15 susceptible to BoNT/A intoxication transiently contain a polynucleotide molecule encoding a component necessary for the cells to undergo the overall cellular mechanism whereby a BoNT/A proteolytically cleaves a SNAP-25 substrate. In another embodiment, cells from an established cell 20 line susceptible to BoNT/A intoxication transiently contain a polynucleotide molecule encoding a plurality of components necessary for the cells to undergo the overall cellular mechanism whereby a BoNT/A proteolytically cleaves a SNAP-25 substrate. In aspects of this embodiment, cells from an estab- 25 lished cell line susceptible to BoNT/A intoxication transiently contain a polynucleotide molecule encoding FGFR2, FGFR3, SV2 or SNAP-25. In aspects of this embodiment, cells from an established cell line susceptible to BoNT/A intoxication transiently contain the polynucleotide molecule 30 encoding FGFR2 of SEQ ID NO: 130, SEQ ID NO: 131, SEQ IDNO: 132, SEQ IDNO: 133, SEQ IDNO: 134, SEQ IDNO: 135, SEQ ID NO: 136, SEQ ID NO: 137, or SEQ ID NO: 138. In other aspects of this embodiment, cells from an established cell line susceptible to BoNT/A intoxication transiently con- 35 tain the polynucleotide molecule encoding FGFR3 of SEQ ID NO: 139, SEQ ID NO: 140, or SEQ ID NO: 141. In yet other aspects of this embodiment, cells from an established cell line susceptible to BoNT/A intoxication transiently contain the polynucleotide molecule encoding SV2 of SEQ ID NO: 142, 40 SEQ ID NO: 143, or SEQ ID NO: 144. In yet other aspects of this embodiment, cells from an established cell line susceptible to BoNT/A intoxication transiently contain the polynucleotide molecule encoding SNAP-25 of SEQ ID NO: 145, or SEQ ID NO: 146.

In another embodiment, cells from an established cell line susceptible to BoNT/A intoxication stably contain a polynucleotide molecule encoding a component necessary for the cells to undergo the overall cellular mechanism whereby a BoNT/A proteolytically cleaves a SNAP-25 substrate. In 50 another embodiment, cells from an established cell line susceptible to BoNT/A intoxication stably contain a polynucleotide molecule encoding a plurality of components necessary for the cells to undergo the overall cellular mechanism whereby a BoNT/A proteolytically cleaves a SNAP-25 sub- 55 strate. In aspects of this embodiment, cells from an established cell line susceptible to BoNT/A intoxication stably contain a polynucleotide molecule encoding FGFR2, FGFR3, SV2 or SNAP-25. In aspects of this embodiment, cells from an established cell line susceptible to BoNT/A 60 intoxication stably contain the polynucleotide molecule encoding FGFR2 of SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 132, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, or SEQ ID NO: 138. In other aspects of this embodiment, cells from an established 65 cell line susceptible to BoNT/A intoxication stably contain the polynucleotide molecule encoding FGFR3 of SEQ ID

44

NO: 139, SEQ ID NO: 140, or SEQ ID NO: 141. In yet other aspects of this embodiment, cells from an established cell line susceptible to BoNT/A intoxication stably contain the polynucleotide molecule encoding SV2 of SEQ ID NO: 142, SEQ ID NO: 143, or SEQ ID NO: 144. In yet other aspects of this embodiment, cells from an established cell line susceptible to BoNT/A intoxication stably contain the polynucleotide molecule encoding SNAP-25 of SEQ ID NO: 145, or SEQ ID NO: 146.

As mentioned above, an exogenous component necessary for the cells to undergo the overall cellular mechanism whereby a BoNT/A proteolytically cleaves a SNAP-25 substrate, such as, e.g., a SNAP-25, a FGFR2, a FGFR3, or a SV2 disclosed in the present specification can be introduced into a cell. Any and all methods useful for introducing such an exogenous component with a delivery agent into a cell population can be useful with the proviso that this method transiently introduces the exogenous component disclosed in the present specification in at least 50% of the cells within a given cell population. Thus, aspects of this embodiment can include a cell population in which, e.g., at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% of the given cell population transiently contains an exogenous component necessary for the cells to undergo the overall cellular mechanism whereby a BoNT/A proteolytically cleaves a SNAP-25 substrate, such as, e.g., a SNAP-25, a FGFR2, a FGFR3, or a SV2 disclosed in the present specification. As used herein, the term "delivery agent" refers to any molecule that enables or enhances internalization of a covalently-linked, non-covalently-linked or in any other manner associated with a polypeptide into a cell. Thus, the term "delivery agent" encompasses, without limitation, proteins, peptides, peptidomimetics, small molecules, polynucleotide molecules, liposomes, lipids, viruses, retroviruses and cells that, without limitation, transport a covalently or non-covalently linked molecule to the cell membrane, cell cytoplasm or nucleus. It further is understood that the term "delivery agent" encompasses molecules that are internalized by any mechanism, including delivery agents which function via receptor mediated endocytosis and those which are independent of receptor mediated endocytosis.

A delivery agent can also be an agent that enables or enhances cellular uptake of a covalently linked component, like FGFR2, FGFR3, SV2, or SNAP-25, such as, e.g., by chemical conjugation or by genetically produced fusion proteins. Methods that covalently link delivery agents and methods of using such agents are described in, e.g., Steven F. Dowdy, Protein Transduction System and Methods of Use Thereof, International Publication No WO 00/34308; Gerard Chassaing & Alain Prochiantz, Peptides which can be Used as Vectors for the Intracellular Addressing of Active Molecules, U.S. Pat. No. 6,080,724; Alan Frankel et al., Fusion Protein Comprising TAT-derived Transport Moiety, U.S. Pat. No. 5,674,980; Alan Frankel et al., TAT-derived Transport Polypeptide Conjugates, U.S. Pat. No. 5,747,641; Alan Frankel et al., TAT-derived Transport Polypeptides and Fusion Proteins, U.S. Pat. No. 5,804,604; Peter F. J. O'Hare et al., Use of Transport Proteins, U.S. Pat. No. 6,734,167; Yao-Zhong Lin & Jack J. Hawiger, Method for Importing Biologically Active Molecules into Cells, U.S. Pat. No. 5,807,746; Yao-Zhong Lin & Jack J. Hawiger, Method for Importing Biologically Active Molecules into Cells, U.S. Pat. No. 6,043,339; Yao-Zhong Lin et al., Sequence and Method for Genetic Engineering of Proteins with Cell Membrane Translocating Activity, U.S. Pat. No. 6,248,558; Yao-Zhong Lin et al., Sequence and Method for Genetic Engineering of Proteins with Cell Membrane Translocating Activity, U.S. Pat.

No. 6,432,680; Jack J. Hawiger et al., Method for Importing Biologically Active Molecules into Cells, U.S. Pat. No. 6,495,518; Yao-Zhong Lin et al, Sequence and Method for Genetic Engineering of Proteins with Cell Membrane Translocating Activity, U.S. Pat. No. 6,780,843; Jonathan B. Rothbard & Paul A Wender, Method and Composition for Enhancing Transport Across Biological Membranes, U.S. Pat. No. 6,306,993; Jonathan B. Rothbard & Paul A Wender, Method and Composition for Enhancing Transport Across Biological Membranes, U.S. Pat. No. 6,495,663; and Pamela B. Davis et al., Fusion Proteins for Protein Delivery, U.S. Pat. No. 6,287, 817, each of which is incorporated by reference in its entirety.

A delivery agent can also be an agent that enables or enhances cellular uptake of a non-covalently associated component, like FGFR2, FGFR3, SV2c, or SNAP-25. Methods 15 that function in the absence of covalent linkage and methods of using such agents are described in, e.g., Gilles Divita et al, Peptide-Mediated Transfection Agents and Methods of Use, U.S. Pat. No. 6,841,535; Philip L Felgner and Olivier Zelphati, Intracellular Protein Delivery Compositions and Meth- 20 ods of Use, U.S. Patent Publication No. 2003/0008813; and Michael Karas, Intracellular Delivery of Small Molecules, Proteins and Nucleic Acids, U.S. Patent Publication 2004/ 0209797, each of which is incorporated by reference in its entirety. Such peptide delivery agents can be prepared and 25 used by standard methods and are commercially available, see, e.g. the CHARIOTTM Reagent (Active Motif, Carlsbad, Calif.); BIO-PORTER® Reagent (Gene Therapy Systems, Inc., San Diego, Calif.), BIO TREKTM Protein Delivery Reagent (Stratagene, La Jolla, Calif.), and PRO-JECTTM Pro- 30 tein Transfection Reagent (Pierce Biotechnology Inc., Rockford, Ill.).

Aspects of the present disclosure comprise, in part, a sample comprising a BoNT/A. As used herein, the term "sample comprising a BoNT/A" refers to any biological mat- 35 ter that contains or potentially contains an active BoNT/A. A variety of samples can be assayed according to a method disclosed in the present specification including, without limitation, purified, partially purified, or unpurified BoNT/A; recombinant single chain or di-chain toxin with a naturally or 40 non-naturally occurring sequence; recombinant BoNT/A with a modified protease specificity; recombinant BoNT/A with an altered cell specificity; bulk BoNT/A; a formulated BoNT/A product, including, e.g., BOTOX®, DYSPORT®/ RELOXIN®, XEOMIN®, PURTOX®, NEURONOX®, 45 BTX-A and; cells or crude, fractionated or partially purified cell lysates from, e.g., bacteria, yeast, insect, or mammalian sources; blood, plasma or serum; raw, partially cooked, cooked, or processed foods; beverages; animal feed; soil samples; water samples; pond sediments; lotions; cosmetics; 50 and clinical formulations. It is understood that the term sample encompasses tissue samples, including, without limitation, mammalian tissue samples, livestock tissue samples such as sheep, cow and pig tissue samples; primate tissue samples; and human tissue samples. Such samples encom- 55 pass, without limitation, intestinal samples such as infant intestinal samples, and tissue samples obtained from a wound. As non-limiting examples, a method of detecting picomolar amounts of BoNT/A activity can be useful for determining the presence or activity of a BoNT/A in a food or 60 beverage sample; to assay a sample from a human or animal, for example, exposed to a BoNT/A or having one or more symptoms of botulism; to follow activity during production and purification of bulk BoNT/A; to assay a formulated BoNT/A product used in pharmaceutical or cosmetics applications; or to assay a subject's blood serum for the presence or absence of neutralizing α -BoNT/A antibodies.

46

Thus, in an embodiment, a sample comprising a BoNT/A is a sample comprising any amount of a BoNT/A. In aspects of this embodiment, a sample comprising a BoNT/A comprises about 100 ng or less, about 10 ng or less, about 1 ng or less, about 10 pg or less, or about 1 pg or less of a BoNT/A. In other aspects of this embodiment, a sample comprising a BoNT/A comprises about 1 pM or less, about 100 nM or less, about 10 nM or less, about 100 pM or less, about 100 fM or less, about 100 fM

Aspects of the present disclosure comprise, in part, isolating from the treated cell a SNAP-25 component comprising a SNAP-25 having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond. As used herein, the term "SNAP-25 component comprising a SNAP-25 having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond" refers to a cellular component containing the SNAP-25 cleavage product. It is envisioned that any method suitable for enriching or isolating a SNAP-25 component can be useful, including, without limitation, cell lysing protocols, spin-column purification protocols, immunoprecipitation, affinity purification, and protein chromatography.

Aspects of the present disclosure comprise, in part, an α -SNAP-25 antibody linked to a solid phase support. As used herein, the term "solid-phase support" is synonymous with "solid phase" and refers to any matrix that can be used for immobilizing an α-SNAP-25 antibody disclosed in the present specification. Non-limiting examples of solid phase supports include, e.g., a tube; a plate; a column; pins or "dipsticks"; a magnetic particle, a bead or other spherical or fibrous chromatographic media, such as, e.g., agarose, sepharose, silica and plastic; and sheets or membranes, such as, e.g., nitrocellulose and polyvinylidene fluoride (PVDF). The solid phase support can be constructed using a wide variety of materials such as, e.g., glass, carbon, polystyrene, polyvinylchloride, polypropylene, polyethylene, dextran, nylon, diazocellulose, or starch. The solid phase support selected can have a physical property that renders it readily separable from soluble or unbound material and generally allows unbound materials, such as, e.g., excess reagents, reaction by-products, or solvents, to be separated or otherwise removed (by, e.g., washing, filtration, centrifugation, etc.) from solid phase support-bound assay component. Non-limiting examples of how to make and use a solid phase supports are described in, e.g., Molecular Cloning, A Laboratory Manual, supra, (2001); and Current Protocols in Molecular Biology, supra, (2004), each of which is hereby incorporated by reference in its entirety.

Aspects of the present disclosure comprise, in part, detecting the presence of an antibody-antigen complex comprising an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond and a SNAP-25 cleavage product having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond. It is envisioned that any detection system can be used to practice aspects of this disclosed immuno-based method, with the provision that the signal to noise ratio can distinguish to a statistically significant degree the signal from the antibody-antigen complex from the background signal. Non-limiting examples of immuno-based detection systems include immunoblot analysis, like Western blotting and dot-blotting, immunoprecipitation analysis, enzyme-linked immunosorbent analysis (ELISA), and sandwich ELISA. The detection of the signal can be achieved using autoradiography with imaging or phosphorimaging (AU), chemiluminescence (CL), electrochemi-

luminescence (ECL), bioluminescence (BL), fluorescence, resonance energy transfer, plane polarization, colorimetric, or flow cytometry (FC). Descriptions of immuno-based detection systems are disclosed in, e.g., Michael M. Rauhut, Chemiluminescence, In Kirk-Othmer Concise Encyclopedia 5 of Chemical Technology (Ed. Grayson, 3rd ed, John Wiley and Sons, 1985); A. W. Knight, A Review of Recent Trends in Analytical Applications of Electrogenerated Chemiluminescence, Trends Anal. Chem. 18(1): 47-62 (1999); K. A. Fahnrich, et al., Recent Applications of Electrogenerated Chemi- 10 luminescence in Chemical Analysis, Talanta 54(4): 531-559 (2001); Commonly Used Techniques in Molecular Cloning, pp. A8.1-A8-55 (Sambrook & Russell, eds., Molecular Cloning A Laboratory Manual, Vol. 3, 3rd ed. 2001); Detection Systems, pp. A9.1-A9-49 (Sambrook & Russell, eds., 15 Molecular Cloning A Laboratory Manual, Vol. 3, 3rd ed. 2001); Electrogenerated Chemiluminescence, (Ed. Allen J. Bard, Marcel Dekker, Inc., 2004), each of which is hereby incorporated by reference in its entirety.

A sandwich ELISA (or sandwich immunoassay) is a 20 method based on two antibodies, which bind to different epitopes on the antigen. A capture antibody having a high binding specificity for the antigen of interest, is bound to a solid surface. The antigen is then added followed by addition of a second antibody referred to as the detection antibody. The 25 detection antibody binds the antigen to a different epitope than the capture antibody. The antigen is therefore 'sandwiched' between the two antibodies. The antibody binding affinity for the antigen is usually the main determinant of immunoassay sensitivity. As the antigen concentration 30 increases the amount of detection antibody increases leading to a higher measured response. To quantify the extent of binding different reporter systems can be used, such as, e.g., an enzyme attached to the secondary antibody and a reporter substrate where the enzymatic reaction forms a readout as the 35 detection signal. The signal generated is proportional to the amount of target antigen present in the sample. The reporter substrate used to measure the binding event determines the detection mode. A spectrophotometric plate reader is used for colorimetric detection. Chemiluminescent and electrochemi- 40 luminescence substrates have been developed which further amplify the signal and can be read on a luminescent reader. The reporter can also be a fluorescent readout where the enzyme step of the assay is replaced with a fluorophore and the readout is then measured using a fluorescent reader. 45 Reagents and protocols necessary to perform an ECL sandwich ELISA are commercially available, including, without exception, MSD sandwich ELISA-ECL detection platform (Meso Scale Discovery, Gaithersburg, Md.).

Thus, in an embodiment, detecting the presence of an antibody-antigen complex comprising an α -SNAP-25 antibody that selectively binds to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond and a SNAP-25 cleavage product having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond can be performed using an immuno-blot analysis, an immunoprecipitation analysis, an ELISA, or a sandwich ELISA. In aspects of this embodiment, the detection is performed using a AU, CL, ECL, or BL immuno-blot analysis, a AU, CL, ECL, BL, or FC immunoprecipitation analysis, a AU, CL, ECL, BL, or FC ELISA, or a AU, CL, ECL, BL, or FC sandwich ELISA.

Aspects of the present disclosure can be practiced in a single plex or multiplex fashion. An immuno-based method of detecting BoNT/A activity practiced in a single-plex fashion 65 is one that only detects the presence of an antibody-antigen complex comprising an α -SNAP-25 antibody and a SNAP-25 48

cleavage product having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond. An immuno-based method of detecting BoNT/A activity practiced in a multiplex fashion is one that concurrently detects the presence of two or more antibody-antigen complexes; one of which is the antibody-antigen complex comprising an α-SNAP-25 antibody and a SNAP-25 cleavage product having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond; and the other(s) of which is antibody-antigen complex to a second, third, fourth, etc. different protein. A second protein can be used, e.g., as an internal control to minimize sample to sample variability by normalizing the amount of α -SNAP-25/SNAP-25 antibody-antigen complex detected to the amount of antibody-antigen complex detected for the second protein. As such, the second protein is usually one that is consistently expressed by the cell, such as a house-keeping protein. Non-limiting examples of a useful second protein, include, e.g., a Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH), Syntaxin, cytokines. Methods of performing an immuno-based assay in a multiplex fashion are described in. e.g., U. B. Nielsen and B. H. Geierstanger, Multiplexed Sandwich Assays in Microarray Format, J. Immunol. Methods. 290(1-2): 107-120 2004); R. Barry and M, Soloviev, Quantitative Protein Profiling using Antibody Arrays, Proteomics, 4(12): 3717-3726 (2004); M. M. Ling et al., Multiplexing Molecular Diagnostics and Immunoassays using Emerging Microarray Technologies, Expert Rev Mol. Diagn. 7(1): 87-98 (2007); S. X. Leng et al., ELISA and Multiplex Technologies for Cytokine Measurement in Inflammation and Aging Research, J Gerontol A Biol Sci Med. Sci. 63(8): 879-884 (2008), each of which is hereby incorporated by reference in its entirety.

Thus, in one embodiment, an immuno-based method of detecting BoNT/A activity practiced in a single-plex fashion by only detecting the presence of an antibody-antigen complex comprising an $\alpha\textsc{-}SNAP\textsc{-}25$ antibody and a SNAP-25 cleavage product having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond. In another embodiment, immuno-based method of detecting BoNT/A activity practiced in a multiplex fashion by concurrently detecting the presence of an antibody-antigen complex comprising an $\alpha\textsc{-}SNAP\textsc{-}25$ antibody and a SNAP-25 cleavage product having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond and at least one other antibody-antigen complex to a protein other than SNAP-25, such as, e.g., GAPDH or Syntaxin.

Aspects of the present disclosure provide, in part, a method of determining BoNT/A immunoresistance. As used herein, the term "BoNT/A immunoresistance" means a mammal that does not fully respond to a BoNT/A therapy, or shows a reduced beneficial effect of a BoNT/A therapy because the immune response of that mammal, either directly or indirectly, reduces the efficacy of the therapy. A non-limiting example of reduced efficacy would be the presence in a mammal of at least one neutralizing α-BoNT/A antibody that binds to a BoNT/A toxin in a manner that reduces or prevents the specificity or activity of the toxin. As used herein, the term "BoNT/A therapy" means a treatment, remedy, cure, healing, rehabilitation or any other means of counteracting something undesirable in a mammal requiring neuromodulation using a BoNT/A toxin or administering to a mammal one or more controlled doses of a medication, preparation or mixture of a BoNT/A toxin that has medicinal, therapeutic, curative, cosmetic, remedial or any other beneficial effect. BoNT/A therapy encompasses, without limitation, the use of any naturally occurring or modified fragment thereof, in any formulation, combined with any carrier or active ingredient and

administered by any route of administration. An exemplary, well-known BoNT/A therapy is a BOTOX® therapy.

Aspects of the present disclosure provide, in part, a test sample obtained from a mammal being tested for the presence or absence of α-BoNT/A neutralizing antibodies. As used herein, the term "test sample" refers to any biological matter that contains or potentially contains at least one α -BoNT/A antibody. An α-BoNT/A antibody can be a neutralizing anti-BoNT/A antibody or a non-neutralizing anti-BoNT/A antibody. As used herein, the term "neutralizing anti-BoNT/A antibodies" means any α-BoNT/A antibody that will, under physiological conditions, bind to a region of a BoNT/A toxin in such a manner as to reduce or prevent the toxin from exerting its effect in a BoNT/A therapy. As used herein, the 15 term "non-neutralizing α-BoNT/A antibodies" means any α-BoNT/A antibody that will, under physiological conditions, bind to a region of a BoNT/A toxin, but not prevent the toxin from exerting its effect in a BoNT/A therapy. It is envisioned that any and all samples that can contain 20 α -BoNT/A antibodies can be used in this method, including, without limitation, blood, plasma, serum and lymph fluid. In addition, any and all organisms capable of raising α -BoNT/A antibodies against a BoNT/A toxin can serve as a source for a sample including, but not limited to, birds and mammals, 25 including mice, rats, goats, sheep, horses, donkeys, cows, primates and humans. Non-limiting examples of specific protocols for blood collection and serum preparation are described in, e.g., Marjorie Schaub Di Lorenzo & Susan King Strasinger, Blood Collection in Healthcare (F. A. Davis Company, 2001); and Diana Garza & Kathleen Becan-McBride, Phlebotomy Handbook: Blood Collection Essen-TIALS (Prentice Hall, 6th ed., 2002). These protocols are routine procedures well within the scope of one skilled in the art and from the teaching herein. A test sample can be obtained from an organism prior to exposure to a BoNT/A toxin, after a single BoNT/A treatment, after multiple BoNT/A toxin treatments, before onset of resistance to a BoNT/A therapy, or after onset of resistance to a BoNT/A therapy.

Aspects of the present disclosure provide, in part, a control sample. As used herein, the term "control sample" means any sample in which the presence or absence of the test sample is known and includes both negative and positive control samples. With respect to neutralizing α-BoNT/A antibodies, 45 a negative control sample can be obtained from an individual who had never been exposed to BoNT/A and may include, without limitation, a sample from the same individual supplying the test sample, but taken before undergoing a BoNT/A therapy; a sample taken from a different individual never been exposed to BoNT/A; a pooled sample taken from a plurality of different individuals never been exposed to BoNT/A. With respect to neutralizing α -BoNT/A antibodies, a positive control sample can be obtained from an individual manifesting BoNT/A immunoresistance and includes, without limitation, individual testing positive in a patient-based testing assays; individual testing positive in an in vivo bioassay; and individual showing hyperimmunity, e.g., a BoNT/A vaccinated individual.

It is further foreseen that α -BoNT/A antibodies can be purified from a sample. Anti-BoNT/A antibodies can be purified from a sample, using a variety of procedures including, without limitation, Protein NG chromatography and affinity chromatography. Non-limiting examples of specific protocols for purifying antibodies from a sample are described in, e.g., ANTIBODIES: A LABORATORY MANUAL (Edward

50

Harlow & David Lane, eds., Cold Spring Harbor Laboratory Press, 2nd ed. 1998); USING ANTIBODIES: A LABORATORY MANUAL: PORTABLE PROTOCOL No. I (Edward Harlow & David Lane, Cold Spring Harbor Laboratory Press, 1998); and Molecular Cloning, A Laboratory Manual, supra, (2001), which are hereby incorporated by reference. In addition, non-limiting examples of antibody purification methods as well as well-characterized reagents, conditions and protocols are readily available from commercial vendors that include, without limitation, Pierce Biotechnology, Inc., Rockford, Ill.; and Zymed Laboratories, Inc., South San Francisco, Calif. These protocols are routine procedures well within the scope of one skilled in the art.

Thus, in an embodiment, a sample comprises blood. In aspect of this embodiment, the sample comprises mouse blood, rat blood, goat blood, sheep blood, horse blood, donkey blood, cow blood, primate blood or human blood. In another embodiment, a sample comprises plasma. In an aspect of this embodiment, a test sample comprises mouse plasma, rat plasma, goat plasma, sheep plasma, horse plasma, donkey plasma, cow plasma, primate plasma or human plasma. In another embodiment, a sample comprises serum. In an aspect of this embodiment, the sample comprises mouse serum, rat serum, goat serum, sheep serum, horse serum, donkey serum, cow serum, primate serum and human serum. In another embodiment, a sample comprises lymph fluid. In aspect of this embodiment, a sample comprises mouse lymph fluid, rat lymph fluid, goat lymph fluid, sheep lymph fluid, horse lymph fluid, donkey lymph fluid, cow lymph fluid, primate lymph fluid or human lymph fluid. In yet another embodiment, a sample is a test sample. In yet another embodiment, a sample is a control sample. In aspects of this embodi-35 ment, a control sample is a negative control sample or a positive control sample.

Aspects of the present disclosure provide, in part, comparing the amount of SNAP-25 having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond detected in step (d) to the amount of SNAP-25 having a carboxylterminus at the P₁ residue of the BoNT/A cleavage site scissile bond detected in step (e). In an embodiment, the amount of SNAP-25 cleavage product in the test sample is higher as compared to the amount of SNAP-25 cleavage product in the control sample. In an aspect of this embodiment, a higher amount of SNAP-25 cleavage product in the test sample as compared to a positive control sample indicates a reduction in or lack of BoNT/A immunoresistance in the mammal. In another aspect of this embodiment, an equivalent amount of SNAP-25 cleavage product in the test sample as compared to a negative control sample indicates a reduction in or lack of BoNT/A immunoresistance in the mammal. In another embodiment, the amount of SNAP-25 cleavage product in the test sample is lower as compared to the amount of SNAP-25 cleavage product in the control sample. In an aspect of this embodiment, a lower or equivalent amount of SNAP-25 cleavage product in the test sample as compared to a positive control sample indicates an increase in or presence of BoNT/A immunoresistance in the mammal. In another aspect of this embodiment, a lower amount of SNAP-25 cleavage product in the test sample as compared to a negative control sample indicates an increase in or presence of BoNT/A immunoresistance in the mammal.

It is envisioned that any and all assay conditions suitable for detecting the present of a neutralizing $\alpha\text{-BoNT/A}$ anti-

51

body in a sample are useful in the methods disclosed in the present specification, such as, e.g., linear assay conditions and non-linear assay conditions. In an embodiment, the assay conditions are linear. In an aspect of this embodiment, the assay amount of a BoNT/A is in excess. In another aspect of this embodiment, the assay amount of a BoNT/A is rate-limiting. In another aspect of this embodiment, the assay amount of a test sample is rate-limiting.

Aspects of the present disclosure can also be described as $_{10}$ follows:

- A composition comprising a carrier linked to a flexible linker linked to SNAP-25 antigen having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond.
- 2. The composition of 1, wherein the P₁ residue of the BoNT/A cleavage site scissile bond is glutamine or lysine.
- The composition of 1, wherein the SNAP-25 antigen comprises SEQ ID NO: 147.
- The composition of 1, wherein the flexible linker and the SNAP-25 antigen amino acid sequence is SEQ ID NO: 38 or SEQ ID NO: 46.
- 5. An isolated α -SNAP-25 antibody, wherein the isolated $_{25}$ α -SNAP-25 antibody binds an epitope comprising a carboxyl-terminus at the P $_{1}$ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product.
- 6. The isolated α -SNAP-25 antibody of 5, wherein the α -SNAP-25 antibody has an association rate constant for an epitope not comprising a carboxyl-terminus glutamine of the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product of less than $1\times10^1~{\rm M}^{-1}~{\rm s}^{-1}$; and wherein the α -SNAP-25 antibody has an equilibrium disassociation constant for the epitope of less than $0.450~{\rm nM}$.
- 7. The isolated α -SNAP-25 antibody of 5, wherein the isolated α -SNAP-25 antibody has a heavy chain variable region comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 72, SEQ ID NO: 74, 40 SEQ ID NO: 76, SEQ ID NO: 80, and SEQ ID NO: 82; and a light chain variable region comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, and SEQ ID NO: 92.
- 8. The isolated α -SNAP-25 antibody of 5, wherein the isolated α -SNAP-25 antibody comprises at least the V_H CDR1 of SEQ ID NO: 93, the V_H CDR1 of SEQ ID NO: 94, the V_H CDR1 of SEQ ID NO: 95, the V_H CDR1 of SEQ ID NO: 118, the V_H CDR1 of SEQ ID NO: 119, or the V_H 50 CDR1 of SEQ ID NO: 120.
- 9. The isolated α -SNAP-25 antibody of 5, wherein the isolated α -SNAP-25 antibody comprises at least the V_H CDR2 of SEQ ID NO: 96, the V_H CDR2 of SEQ ID NO: 97, the V_H CDR2 of SEQ ID NO: 98, the V_H CDR2 of SEQ ID NO: 121, the V_H CDR2 of SEQ ID NO: 121, the V_H CDR2 of SEQ ID NO: 122, or the V_H CDR2 of SEQ ID NO: 123.
- 10. The isolated α -SNAP-25 antibody of 5, wherein the isolated α -SNAP-25 antibody comprises at least the V_H CDR3 of SEQ ID NO: 100, the V_H C DR3 of SEQ ID NO: 101, the V_H CDR3 of SEQ ID NO: 102, or the V_H CDR3 of SEQ ID NO: 124.
- 11. The isolated α -SNAP-25 antibody of 5, wherein the isolated α -SNAP-25 antibody comprises at least the V_L CDR1 of SEQ ID NO: 103, the V_L CDR1 of SEQ ID NO: 104, the V_L CDR1 of SEQ ID NO: 105, the V_L CDR1 of SEQ ID

52

- NO: 106, the V_L CDR1 of SEQ ID NO: 107, the V_L CDR1 of SEQ ID NO: 125, the V_L CDR1 of SEQ ID NO: 126, the V_L CDR1 of SEQ ID NO: 127, the V_1 CDR1 of SEQ ID NO: 128, or the V_L CDR1 of SEQ ID NO: 129.
- 12. The isolated α -SNAP-25 antibody of 5, wherein the isolated α -SNAP-25 antibody comprises at least the V $_L$ CDR2 of SEQ ID NO: 108, the V $_L$ CDR2 of SEQ ID NO: 109, the V $_L$ CDR2 of SEQ ID NO: 110, the V $_L$ CDR2 of SEQ ID NO: 111, or the V $_L$ CDR2 of SEQ ID NO: 112.
- 13. The isolated α -SNAP-25 antibody of 5, wherein the isolated α -SNAP-25 antibody comprises at least the V_L CDR3 of SEQ ID NO: 113, the V_L CDR3 of SEQ ID NO: 114, the V_L CDR3 of SEQ ID NO: 115, the V_L CDR3 of SEQ ID NO: 116, or the V_L CDR3 of SEQ ID NO: 117.
- 14. The isolated α -SNAP-25 antibody of 5, wherein the isolated α -SNAP-25 antibody comprises a heavy chain variable region comprising SEQ ID NO: 93, SEQ ID NO: 121 and SEQ ID NO: 100; and a light chain variable region comprising SEQ ID NO: 105, SEQ ID NO: 110 and SEQ ID NO: 115.
- 15. The isolated α-SNAP-25 antibody of 5, wherein the isolated α-SNAP-25 antibody selectively binds the SNAP-25 epitope of SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 147 or SEQ ID NO: 148.
- 16. The isolated α-SNAP-25 antibody of 5, wherein the isolated α-SNAP-25 antibody selectively binds the SNAP-25 epitope of SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, or SEQ ID NO: 44.
- 17. A method of detecting BoNT/A activity, the method comprising the steps of: a) treating a cell from an established cell line with a sample comprising a BoNT/A, wherein the cell from an established cell line is susceptible to BoNT/A intoxication by a BoNT/A; b) isolating from the treated cell a SNAP-25 component comprising a SNAP-25 cleavage product having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond; c) contacting the SNAP-25 component with an α -SNAP-25 antibody, wherein the α -SNAP-25 antibody binds an epitope comprising a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product; and d) detecting the presence of an antibody-antigen complex comprising the α-SNAP-25 antibody and the SNAP-25 cleavage product; wherein detection by the antibody-antigen complex is indicative of BoNT/A activity.
- 18. A method of detecting BoNT/A activity, the method comprising the steps of: a) treating a cell from an established cell line with a sample comprising a BoNT/A, wherein the cell from an established cell line is susceptible to BoNT/A intoxication by a BoNT/A; b) isolating from the treated cell a SNAP-25 component comprising a SNAP-25 cleavage product having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond; c) contacting the SNAP-25 component with an α -SNAP-25 antibody linked to a solid phase support, wherein the α -SNAP-25 antibody binds an epitope comprising a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product; and d) detecting the presence of an antibody-antigen complex comprising the α -SNAP-25 antibody and the SNAP-25 cleavage product; wherein detection by the antibody-antigen complex is indicative of BoNT/A activity.

- 19. A method of detecting BoNT/A activity, the method comprising the steps of: a) treating a cell from an established cell line with a sample comprising a BoNT/A, wherein the cell from an established cell line is susceptible to BoNT/A intoxication by a BoNT/A; b) isolating from the treated cell 5 a SNAP-25 component comprising a SNAP-25 cleavage product having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond; c) fixing the SNAP-25 component to a solid phase support; d) contacting the SNAP-25 component with an α-SNAP-25 antibody, wherein the α-SNAP-25 antibody binds an epitope comprising a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product; and e) detecting the presence of an anti- $_{15}$ body-antigen complex comprising the α-SNAP-25 antibody and the SNAP-25 cleavage product; wherein detection by the antibody-antigen complex is indicative of BoNT/A activity.
- 20. A method of detecting BoNT/A activity, the method comprising the steps of: a) treating a cell from an established cell line with a sample comprising a BoNT/A, wherein the cell from an established cell line can uptake BoNT/A; b) isolating from the treated cell a SNAP-25 component comprising a SNAP-25 cleavage product having a carboxyl- 25 terminus at the P₁ residue of the BoNT/A cleavage site scissile bond; c) contacting the SNAP-25 component with an α-SNAP-25 antibody, wherein the α-SNAP-25 antibody binds an epitope comprising a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond 30 24. A method of determining BoNT/A immunoresistance in a from a SNAP-25 cleavage product; and d) detecting the presence of an antibody-antigen complex comprising the α -SNAP-25 antibody and the SNAP-25 cleavage product; wherein detection by the antibody-antigen complex is indicative of BoNT/A activity.
- 21. A method of detecting BoNT/A activity, the method comprising the steps of: a) treating a cell from an established cell line with a sample comprising a BoNT/A, wherein the cell from an established cell line can uptake BoNT/A; b) isolating from the treated cell a SNAP-25 component comprising a SNAP-25 cleavage product having a carboxylterminus at the P₁ residue of the BoNT/A cleavage site scissile bond; c) contacting the SNAP-25 component with an α-SNAP-25 antibody linked to a solid phase support, wherein the α -SNAP-25 antibody binds an eptiepe epitope 45 comprising a carboxyl-terminus at the P1 residue of the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product; and d) detecting the presence of an antibody-antigen complex comprising the α -SNAP-25 antibody and the SNAP-25 cleavage product; wherein detec- 50 tion by the antibody-antigen complex is indicative of BoNT/A activity.
- 22. A method of detecting BoNT/A activity, the method comprising the steps of: a) treating a cell from an established cell line with a sample comprising a BoNT/A, wherein the cell from an established cell line can uptake BoNT/A; b) isolating from the treated cell a SNAP-25 component comprising a SNAP-25 cleavage product having a carboxylterminus at the P₁ residue of the BoNT/A cleavage site scissile bond; c) fixing the SNAP-25 component to a solid phase support; d) contacting the SNAP-25 component with an α-SNAP-25 antibody, wherein the α-SNAP-25 antibody binds an epitope comprising a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product; and e) detecting the presence of an antibody-antigen complex comprising the α-SNAP-25 antibody and the SNAP-25 cleavage product;

54

- wherein detection by the antibody-antigen complex is indicative of BoNT/A activity.
- 23. A method of determining BoNT/A immunoresistance in a mammal comprising the steps of: a) adding a BoNT/A to a test sample obtained from a mammal being tested for the presence or absence of α -BoNT/A neutralizing antibodies; b) treating a cell from an established cell line with the test sample, wherein the cell from an established cell line is susceptible to BoNT/A intoxication; c) isolating from the treated cells a SNAP-25 component comprising a SNAP-25 cleavage product having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond; d) contacting the SNAP-25 component with an α-SNAP-25 antibody, wherein the α -SNAP-25 antibody binds an epitope comprising a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product; e) detecting the presence of an antibodyantigen complex comprising the α-SNAP-25 antibody and the SNAP-25 cleavage product; f) repeating steps b-e with a negative control sample instead of a test sample, the negative control sample comprising a BoNT/A and a serum known not to contain α -BoNT/A neutralizing antibodies; and g) comparing the amount of antibody-antigen complex detected in step e to the amount of antibody-antigen complex detected in step f, wherein detection of a lower amount of antibody-antigen complex detected in step e relative to the amount of antibody-antigen complex detected in step f is indicative of the presence of α -BoNT/A neutralizing antibodies.
- mammal comprising the steps of: a) adding a BoNT/A to a test sample obtained from a mammal being tested for the presence or absence of α -BoNT/A neutralizing antibodies; b) treating a cell from an established cell line with the test sample, wherein the cell from an established cell line is susceptible to BoNT/A intoxication; c) isolating from the treated cells a SNAP-25 component comprising a SNAP-25 cleavage product having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond; d) contacting the SNAP-25 component with an α-SNAP-25 antibody linked to a solid phase support, wherein the α -SNAP-25 antibody binds an epitope comprising a carboxylterminus at the P₁ residue of the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product; e) detecting the presence of an antibody-antigen complex comprising the α -SNAP-25 antibody and the SNAP-25 cleavage product; f) repeating steps b-e with a negative control sample instead of a test sample, the negative control sample comprising a BoNT/A and a serum known not to contain α-BoNT/A neutralizing antibodies; and g) comparing the amount of antibody-antigen complex detected in step e to the amount of antibody-antigen complex detected in step f, wherein detection of a lower amount of antibody-antigen complex detected in step e relative to the amount of antibody-antigen complex detected in step f is indicative of the presence of α-BoNT/A neutralizing antibodies,
- 25. A method of determining BoNT/A immunoresistance in a mammal comprising the steps of: a) adding a BoNT/A to a test sample obtained from a mammal being tested for the presence or absence of α -BoNT/A neutralizing antibodies; b) treating a cell from an established cell line with the test sample, wherein the cell from an established cell line is susceptible to BoNT/A intoxication; c) isolating from the treated cells a SNAP-25 component comprising a SNAP-25 cleavage product having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond; d) fixing the SNAP-25 component to a solid phase support; e) con-

tacting the SNAP-25 component with an α-SNAP-25 antibody, wherein the α -SNAP-25 antibody binds an epitope comprising a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product; f) detecting the presence of an antibodyantigen complex comprising the α -SNAP-25 antibody and the SNAP-25 cleavage product; g) repeating steps b-f with a negative control sample instead of a test sample, the negative control sample comprising a BoNT/A and a serum known not to contain α-BoNT/A neutralizing antibodies; 10 and h) comparing the amount of antibody-antigen complex detected in step f to the amount of antibody-antigen complex detected in step g, wherein detection of a lower amount of antibody-antigen complex detected in step f relative to the amount of antibody-antigen complex 15 detected in step g is indicative of the presence of α-BoNT/A neutralizing antibodies.

- 26. A method of determining BoNT/A immunoresistance in a mammal comprising the steps of: a) adding a BoNT/A to a test sample obtained from a mammal being tested for the 20 presence or absence of α -BoNT/A neutralizing antibodies; b) treating a cell from an established cell line with the test sample, wherein the cell from an established cell line can uptake BoNT/A; c) isolating from the treated cells a SNAP-25 component comprising a SNAP-25 cleavage 25 product having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond; d) contacting the SNAP-25 component with an α-SNAP-25 antibody, wherein the α-SNAP-25 antibody binds an epitope comprising a carboxyl-terminus at the P₁ residue of the 30 BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product; e) detecting the presence of an antibodyantigen complex comprising the α-SNAP-25 antibody and the SNAP-25 cleavage product; f) repeating steps b-e with a negative control sample instead of a test sample, the 35 negative control sample comprising a BoNT/A and a serum known not to contain α -BoNT/A neutralizing antibodies; and g) comparing the amount of antibody-antigen complex detected in step e to the amount of antibody-antigen complex detected in step f, wherein detection of a lower amount 40 of antibody-antigen complex detected in step e relative to the amount of antibody-antigen complex detected in step f is indicative of the presence of α -BoNT/A neutralizing antibodies.
- 27. A method of determining BoNT/A immunoresistance in a 45 32. The method of 17-22, wherein the sample comprises mammal comprising the steps of: a) adding a BoNT/A to a test sample obtained from a mammal being tested for the presence or absence of α -BoNT/A neutralizing antibodies; b) treating a cell from an established cell line with the test sample, wherein the cell from an established cell line can 50 33. The method of 17-28, wherein the α-SNAP-25 antibody is uptake BoNT/A; c) isolating from the treated cells a SNAP-25 component comprising a SNAP-25 cleavage product having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond; d) contacting the SNAP-25 component with an α -SNAP-25 antibody linked 55 to a solid phase support, wherein the α-SNAP-25 antibody binds an epitope comprising a carboxyl-terminus at the P_i residue of the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product; e) detecting the presence of an antibody-antigen complex comprising the α-SNAP-25 antibody and the SNAP-25 cleavage product; f) repeating steps b-e with a negative control sample instead of a test sample, the negative control sample comprising a BoNT/A and a serum known not to contain α-BoNT/A neutralizing antibodies; and g) comparing the amount of antibody-antigen complex detected in step e to the amount of antibodyantigen complex detected in step f, wherein detection of a

56

lower amount of antibody-antigen complex detected in step e relative to the amount of antibody-antigen complex detected in step f is indicative of the presence of α -BoNT/A neutralizing antibodies.

- 28. A method of determining BoNT/A immunoresistance in a mammal comprising the steps of: a) adding a BoNT/A to a test sample obtained from a mammal being tested for the presence or absence of α -BoNT/A neutralizing antibodies; b) treating a cell from an established cell line with the test sample, wherein the cell from an established cell line can uptake BoNT/A; c) isolating from the treated cells a SNAP-25 component comprising a SNAP-25 cleavage product having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond; d) fixing the SNAP-25 component to a solid phase support; e) contacting the SNAP-25 component with an α-SNAP-25 antibody, wherein the α-SNAP-25 antibody binds an epitope comprising a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product; f) detecting the presence of an antibodyantigen complex comprising the α-SNAP-25 antibody and the SNAP-25 cleavage product; g) repeating steps b-f with a negative control sample instead of a test sample, the negative control sample comprising a BoNT/A and a serum known not to contain α -BoNT/A neutralizing antibodies; and h) comparing the amount of antibody-antigen complex detected in step f to the amount of antibody-antigen complex detected in step g, wherein detection of a lower amount of antibody-antigen complex detected in step f relative to the amount of antibody-antigen complex detected in step g is indicative of the presence of α-BoNT/A neutralizing antibodies.
- 29. The method of 17-22 and 23-25, wherein the cell is susceptible to BoNT/A intoxication by about 500 pM or less, by about 400 pM or less, by about 300 pM or less, by about 200 pM or less, by about 100 pM or less of a BoNT/ A.
- 30. The method of 20-22 and 26-28, wherein the cell can uptake about 500 pM or less, by about 400 pM or less, by about 300 pM or less, by about 200 pM or less, by about 100 pM or less of BoNT/A.
- 31. The method of 17-22, wherein the sample comprises about 100 ng or less, about 10 ng or less, about 1 ng or less, 100 fg or less, 10 fg or less, or 1 fg or less of BoNT/A.
- about 100 nM or less, about 10 nM or less, about 1 nM or less, about 100 pM or less, about 10 pM or less, about 1 pM or less, about 100 fM or less, about 10 fM or less, or about 1 fM or less of a BoNT/A.
- the isolated α -SNAP-25 antibody of 5-16.
- 34. The method of 17-28, wherein the presence of an antibody-antigen complex is detected by an immuno-blot analysis, an immunoprecipitation analysis, an ELISA, or a sandwich ELISA.
- 35. The method of 17-28, wherein the immuno-based method has a signal-to-noise ratio for the lower asymptote of at least 3:1, at least 5:1, at least 10:1, at least 20:1, at least 50:1, or at least 100:1.
- 60 36. The method of 17-28, wherein the immuno-based method has a signal-to-noise ratio for the higher asymptote of at least 10:1, at least 20:1, at least 50:1, at least 100:1, at least 200:1, at least 300:1, at least 400:1, at least 500:1, or at least 600:1.
- 65 37. The method of 17-28, wherein the immuno-based method can detect the EC₅₀activity of, e.g., at least 100 ng, at least 50 ng, at least 10 ng, at least 5 ng, at least 100 pg, at least 50

58
TABLE 1-continued

pg, at least $10\,\mathrm{pg}$, at least $5\,\mathrm{pg}$, at least $100\,\mathrm{fg}$, at least $50\,\mathrm{fg}$, at least $10\,\mathrm{fg}$, or at least $5\,\mathrm{fg}$.

- 38. The method of 17-28, wherein the immuno-based method can detect the EC₅₀activity of, e.g., at least 10 nM, at least 5 nM, at least 100 pM, at least 50 pM, at least 10 pM, at least 5 pM, at least 100 fM, at least 5 pM, at least 10 fM, at least 5 fM, or at least 1 fM.
- 39. The method of 17-28, wherein the immuno-based method has an LOD of, e.g., 10 pg or less, 9 pg or less, 8 pg or less, 7 pg or less, 6 pg or less, 5 pg or less, 4 pg or less, 3 pg or less, 2 pg or less, 1 pg or less of a BoNT/A.
- 40. The method of 17-28, wherein the immuno-based method has an LOD of, e.g., 100 fM or less, 90 fM or less, 80 fM less, 70 fM or less, 60 fM or less, 50 fM or less, 40 fM or less, 30 fM or less, 20 fM or less, or 10 fM or less of a BoNT/A.
- 41. The method of 17-28, wherein the immuno-based method has an LOQ of, e.g., 10 pg or less, 9 pg or less, 8 pg or less, 7 pg or less, 6 pg or less, 5 pg or less, 4 pg or less, 3 pg or less, 2 pg or less, 1 pg or less of a BoNT/A.
- 42. The method of 17-28, wherein the immuno-based method has an LOQ of, e.g., 100 fM or less, 90 fM or less, 80 fM or less, 70 fM or less, 60 fM or less, 50 fM or less, 40 fM or less, 30 fM or less, 20 fM or less, or 10 fM or less of a BoNT/A
- 43. The method of 17-28, wherein the immuno-based method can distinguish a fully-active BoNT/A from a partially-active BoNT/A having 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, 20% or less, or 10% or less the activity of a fully-active BoNT/A.

EXAMPLES

Example I

Screening of Candidate Cell Lines

The following example illustrates how to identify established cell lines susceptible to BoNT/A intoxication or have BoNT/A uptake capacity required for a method of detecting ⁴⁰ BoNT/A activity disclosed in the present specification.

1. Growth of Stock Culture of Candidate Cell Lines.

To grow the cell lines, a suitable density of cells from the cell line being tested were plated in a 162 cm² tissue culture flask containing 30 mL of a suitable growth medium (see ⁴⁵ Table 1), and grown in a 37° C. incubator under 5% or 10% carbon dioxide until cells reached the desired density.

TABLE 1

Media Used in Cell Line Screening.				
Cell Line	Serum Growth Media Composition			
Kelly	RPMI 1640, 10% fetal bovine serum, 1% Penicillin-			
SiMa	Streptomycin, 2 mM L-Glutamine			
NB69	RPMI 1640, 15% fetal bovine serum, 1% Penicillin-			
	Streptomycin			
CHP-126	RPMI 1640, 20% fetal bovine serum, 1% Penicillin-			
	Streptomycin			
N4TG3	RPMI 1640, 10% fetal bovine serum, 1% Penicillin-			
	Streptomycin, 100 μM 6-thioguanine			
MHH-NB-11	RPMI 1640, 10% fetal bovine serum, 1% Penicillin-			
	Streptomycin, 2 mM L-glutamine, 0.1 mM non-essential			
	amino acids			
PC12	RPMI 1640, 5% heat-inactivated fetal bovine serum, 10%			
	equine serum, 2 mM GlutaMAX TM, 10 mM HEPES, 1 mM			
	sodium pyruvate, 1% Penicillin-Streptomycin			
N18TG2	DMEM (11885-084, Gibco), 10% fetal bovine serum, 1%			
	Penicillin-Streptomycin, 100 μM 6-thioguanine			

	Media Used in Cell Line Screening.						
5	Cell Line	Serum Growth Media Composition					
,	N1E-115	90% DMEM, 10% heat-inactivated fetal bovine serum,					
	N18	2 mM Glutamine, 2 mM glucose					
	ND8/34						
	NG108-15						
	NG115-401L						
10	NS20Y						
	SK-N-SH						
	SK-N-DZ	90% DMEM, 10% heat-inactivated fetal bovine serum,					
	SK-N-F1	4 mM Glutamine, 4 mM glucose, 0.1 mM non-essential					
		amino acids, 1.5 g/L NaHCO ₃					
	BE(2)-C	EMEM(11090-081, Gibco), Ham's F12 (11765-054, Gibco),					
15	BE(2)-M17	10% heat-inactivated fetal bovine serum, 2 mM Glutamine,					
13	CHP-212	0.1 mM non-essential amino acids,					
	LA-1-55n						
	LA-N-1						
	MC-1XC						
	SK-N-BE(2)						
•	SH-SY5Y						
20	NB4 1A3	Ham's F10 (12471-017, Gibco), 2.5% heat-inactivated fetal					
		bovine serum, 15% heat-inactivated horse serum, 2 mM					
		Glutamine					
	Neuro-2a	EMEM, 10% heat-inactivated fetal bovine serum, 2 mM					
		Glutamine, 0.1 mM non-essential amino acids, 1.5 g/L					
		NaHCO ₃ , 1 mM Sodium pyruvate					
25							

2. Single-Dose Screening of Candidate Cell Lines Using 1 nM BoNT/A.

One parameter tested to improve the sensitivity of a cell-30 based assay was to identify suitable cell lines that exhibited a good capacity to uptake a Clostridial neurotoxin and adhere to a substrate surface. Initially, cell lines were tested for their ability to uptake 1 nM BoNT/A and their ability to attach to a surface. To determine whether a cell line was able to uptake 1 35 nM BoNT/A, a suitable density of cells from a stock culture of the cell line being tested was plated into the wells of 24-well tissue culture plates containing 1 mL of an appropriate serum growth medium (Table 1). The cells were grown in a 37° C. incubator under 5% carbon dioxide until cells reached the desired density (approximately 18 to 24 hours). The growth media was aspirated from each well and replaced with either 1) fresh growth media containing no toxin (untreated cell line) or 2) fresh growth media containing 1 nM of a BoNT/A complex (treated cell line). After an overnight incubation, the cells were washed by aspirating the growth media and rinsing each well with 200 µl of 1×PBS. To harvest the cells, the 1×PBS was aspirated, the cells were lysed by adding 50 µl of 2×SDS Loading Buffer, the lysate was transferred to a clean test tube and the sample was heated to 95° C. 50 for 5 minutes.

To detect for the presence of both uncleaved SNAP-25 substrate and cleaved SNAP-25 products, an aliquot from each harvested sample was analyzed by Western blot. In this analysis, a 12 µl aliquot of the harvested sample was separated by MOPS polyacrylamide gel electrophoresis using NuPAGE® Novex 12% Bis-Tris precast polyacrylamide gels (Invitrogen Inc., Carlsbad, Calif.) under denaturing, reducing conditions. Separated peptides were transferred from the gel onto polyvinylidene fluoride

(PVDF) membranes (Invitrogen Inc., Carlsbad, Calif.) by Western blotting using a Trans-Blot® SD semi-dry electrophoretic transfer cell apparatus (Bio-Rad Laboratories, Hercules, Calif.). PVDF membranes were blocked by incubating at room temperature for 2 hours in a solution containing Tris-Buffered Saline (TBS) (25 mM 2-amino-2-hydroxymethyl-1,3-propanediol hydrochloric acid (Tris-HCI)(pH 7.4), 137 mM sodium chloride, 2.7 mM potassium chloride), 0.1%

Single-Dose Screening of Candidate Cell Lines Using 1 nM BoNT/A.

TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate), 2% Bovine Serum Albumin (BSA), 5% nonfat dry milk. Blocked membranes were incubated at 4° C. for overnight in TBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate), 2% BSA, and 5% nonfat dry milk containing either 1) a 1:5,000 dilution of an α-SNAP-25 mouse monoclonal antibody as the primary antibody (SMI-81; Sternberger Monoclonals Inc., Lutherville, Md.); or 2) a 1:5,000 dilution of S9684 α-SNAP-25 rabbit polyclonal antiserum as the primary antibody (Sigma, St. Louis, Mo.). Both α-SNAP-25 mouse monoclonal and rabbit polyclonal antibodies can detect both the uncleaved SNAP-25 substrate and the SNAP-25 cleavage product, allowing for the assessment of overall SNAP-25 expression in each cell line and the percent of SNAP-25 cleaved after BoNT/A treatment as a parameter to assess the amount of BoNT/A uptake. Primary antibody probed blots were washed three times for 15 minutes each time in TBS, TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). Washed membranes were incubated at room temperature for 2 hours in TBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate), 2% BSA, and 5% nonfat dry milk containing either 1) a 1:10,000 dilution of goat polyclonal anti-mouse immunoglobulin G, heavy and light chains (IgG, H+L) antibody conjugated to horseradish peroxidase (Zymed, South San Francisco, Calif.) as a secondary antibody; or 2) a 1:10,000 dilution of goat polyclonal anti-rabbit immunoglobulin G, heavy and light chains (IgG, H+L) antibody conjugated to horseradish peroxidase (Zymed, South San Francisco, Calif.) as a secondary antibody. Secondary antibody-probed blots were washed three times for 15 minutes each time in TBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). Signal detection of the labeled SNAP-25 products were visualized using the ECL PlusTM Western Blot Detection System (GE Healthcare, Amersham Biosciences, Piscataway, N.J.) and the membrane was imaged and the percent of cleaved quantified with a Typhoon 9410 Variable Mode Imager and Imager Analysis software (GE Healthcare, Amersham Biosciences, Piscataway, N.J.). The choice of pixel size (100 to 200 pixels) and PMT voltage settings (350 to 600, normally 400) depended on the individual blot. Table 2 indicates the cell lines where a SNAP-25 cleavage product was detected when treated with 1 nM BoNT/A. The following cell lines exhibited both an uptake of 1 nM BoNT/A and appropriate attachment to a substrate surface: BE(2)-M17, IMR-32, Kelly, LA1-55n, N1E-115, N4TG3, N18, Neuro-2a, NG108-15, PC12, SH-SY5Y, SiMa and SK-N-BE(2)-C.

To determine whether a cell line was able to attach to a surface, a suitable density of cells from a stock culture of the 55 cell line being tested was plated into the wells of 24-well tissue culture plates containing 1 mL of an appropriate growth media (Table 1). The cells were grown in a 37° C. incubator under 5% carbon dioxide until cells reach the desired density (approximately 18 to 24 hours). Cell attachment was assessed 60 by the percentage of cells that adhered to the bottom well surface of the tissue plate relative to the total number of cells seeded. Cell lines CHP-126, IMR-32, LA-N-1, MC-IXC, NG115-401L, SK-N-BE(2)-C, SK-N—F1 and SK-N-MC were deemed unsuitable because each cell line exhibited less 65 than 50% attachment (Table 2). All other cells lines tested exhibited suitable cell attachment characteristics (Table 2).

TABLE 2

	Single-Do	se Screening of Candidat	e Cell Lines Using I	nM BoN	I/A.
5	Cell Line	Description	Source	1 nM BoNT/A Uptake	Attach- ment
	BE(2)-C	Human neuroblastoma	ATCC CRL-2268	No	>60%
	BE(2)-M17	Human neuroblastoma	ATCC CRL-2268	Yes	>60%
	CHP-126	Human neuroblastoma	DSMZ ACC 304	No	<50%
1.0	CHP-212	Human neuroblastoma	ATCC CRL-2273	No	>60%
10	HCN-1a	Brain cortical neuron	ATCC CRL-10442	No	>60%
	HCN-1a	Brain cortical neuron	ATCC CRL-10442	No	>60%
	IMR-32	Human neuroblastoma	ATCC CRL-10742	Yes	<50%
	Kelly	Human neuroblastoma	ECACC 92110411	Yes	>60%
	Kelly	Human neuroblastoma	DSMZ ACC 355	Yes	>60%
	LA1-55n	Human neuroblastoma	ECACC 06041203	Yes	>60%
15	LA-N-1	Human neuroblastoma	ECACC 06041201	100	<25%
	MC-IXC	Human	ATCC CRL-2270		<25%
	MC-DC	neuroepithelioma	AICC CILL-2270		~2370
	MHH-NB-11	Human neuroblastoma	DSMZ ACC 157	No	>60%
	N1E-115	Mouse neuroblastoma	ATCC CCL-2263	Yes	>60%
	N4TG3	Mouse neuroblastoma	DSMZ ACC 101	No	>60%
20	N18TG2	Mouse neuroblastoma	DSMZ ACC 103	No	>60%
	NB4 1A3	Mouse neuroblastoma	ECACC 89121405	No	>60%
	ND3	Mouse neuroblasto-	ECACC 92090901	No	>60%
	11.23	ma/primary neonatal rat DRG hybrid	201100 72070701	210	0070
	ND7/23	Mouse neuroblasto-	ECACC 92090903	No	>60%
25		ma/primary rat DRG			
		hybrid			
	ND8	Mouse neuroblasto-	ATCC	No	>60%
		ma/primary neonatal rat DRG hybrid			
	ND8/34	Mouse neuroblastoma	ECACC 92090904	No	>60%
30	ND15	Mouse neuroblasto-	ECACC 92090907	No	>60%
		ma/primary neonatal rat DRG hybrid			
	ND27	Mouse neuroblasto- ma/primary rat DRG hybrid	ECACC 92090912	No	>60%
	NB69	Human neuroblastoma	ECACC 99072802	No	>60%
35	NDC	Mouse neuroblasto-	ECACC 92090913	No	>60%
	1.20	ma/primary neonatal rat DRG hybrid	20.100 3203 0313	210	0070
	Neuro-2a	Mouse neuroblastoma	ATCC CCL-131	Yes	>60%
	NG108-15	Mouse neuroblasto-	ECACC 88112302	Yes	>60%
40	NG115-401L	ma/rat glioma hybrid Mouse neuroblasto-	ECACC 87032003	No	<50%
	TOTIS TOTE	ma/rat glioma hybrid	Ecree 0.052005	110	5070
	NS20Y	Mouse neuroblastoma	DSMZ ACC 94	No	>60%
	PC12	Rat	ATCC CRL-1721	Yes	>60%
		pheochromocytoma			00,0
	SH-SY5Y	Human neuroblastoma	ATCC CRL-2266	Yes	>60%
45	SiMa	Human neuroblastoma	DSMZ ACC 164	Yes	>60%
	SK-N- BE(2)-C	Human neuroblastoma	ATCC CRL-2271	Yes	<50%
	SK-N-AS	Human neuroblastoma	ATCC CRL-2137	No	>60%
	SK-N-DZ	Human neuroblastoma	ATCC CRL-2149	No	>60%
	SK-N-F1	Human neuroblastoma	ATCC CRL-2142	No	<50%
50	SK-N-MC	Human neuroblastoma	ATCC HTB-10	_	<25%
	SK-N-SH	Human neuroblastoma	ECACC 86012802	No	>60%
	TE 189.T	Spinal cord	ATCC CRL-7947	No	>60%

Example II

Evaluation of Growth Conditions on Neurotoxin Uptake in Candidate Cell Lines

The following example illustrates how to determine growth conditions for established cell lines that maximize susceptible to BoNT/A intoxication or have BoNT/A uptake capacity.

1. Effects of Cell Differentiation on Neurotoxin Uptake of Candidate Cell Lines.

To determine whether cell differentiation improved neurotoxin uptake, cell lines exhibiting uptake of 1 nM BoNT/A

were transferred into serum-free medium to induced differentiation. A suitable density of cells from a stock culture of the cell line being tested was plated into the wells of 24-well tissue culture plates containing 1 mL of a serum-free medium containing Minimum Essential Medium with 2 mM GlutaMAXTTM I with Earle's salts, 0.1 mM Non-Essential Amino Acids, 10 mM HEPES, 1 mM Sodium Pyruvate, 100 units/mL Penicillin, and 100 µg/mL Streptomycin. These cells were incubated in a 37° C. incubator under 5% carbon $_{10}$ dioxide until the cells differentiated, as assessed by standard and routine morphological criteria, such as growth arrest and neurite extension (approximately 2 to 3 days). As a control, a suitable density of cells from a stock culture of the cell line being tested was plated into the wells of 24-well tissue culture plates containing 1 mL of an appropriate growth medium (Table 1). These undifferentiated control cells were grown in a 37° C. incubator under 5% carbon dioxide until cells reach the desired density (approximately 18 to 24 hours). The $_{20}$ media from both differentiated and undifferentiated control cultures was aspirated from each well and replaced with fresh media containing either 0 (untreated sample), 0.1 nM, 0.3 nM, or 1 nM of a BoNT/A complex. After an overnight incubation, the cells were washed and harvested as described $\ ^{25}$ in Example I.

To detect for the presence of cleaved SNAP-25 products, an aliquot from each harvested sample was analyzed by Western blot as described in Example I, except that harvested samples are separated by SDS-PAGE using 12% 26-well Criterion gels (Bio-Rad Laboratories, Hercules, Calif.), and the rabbit polyclonal $\alpha\textsc{-SNAP-25}_{197}$ antibody serum was used as the primary antibody (see Example IV). Table 3 indicates the cell lines that exhibited a SNAP-25 cleavage product when treated with 0.1 nM BoNT/A. Of the cell lines tested, only the SiMa and Neuro-2a cell lines exhibited an uptake of 0.1 nM BoNT/A in the undifferentiated state. However, besides SiMa and Neuro-2a, the cell lines N18, LA1-55n, PC12, and SH-SY5Y all exhibited an uptake of 0.1 nM BoNT/A in the differentiated state.

2. Effects of Ganglioside Treatment on Neurotoxin Uptake of Differentiated Candidate Cell Lines.

To determine whether treatments improving low-affinity binding of neurotoxin could improve neurotoxin uptake, differentiated cell lines exhibiting uptake of 1 nM BoNT/A were treated with ganglioside GT1b. A suitable density of cells from a stock culture of the cell line being tested was plated into the wells of 24-well tissue culture plates containing serum-free medium as described above, with or without 25 μg/mL GT1b (Alexis Biochemicals, San Diego, Calif.). These cells were incubated in a 37° C. incubator under 5% carbon dioxide until the cells differentiated, as assessed by standard and routine morphological criteria as described above. The media was aspirated from each well and replaced with fresh serum-free media containing either 0 (untreated sample), 1.9 pM, 3.7 pM, 7.4 pM, 14.8 pM, 29.7 pM, 59.4 pM, 118.8 pM, 237.5 pM, 574 pM, 950 pM, and 1900 pM of a BoNT/A complex. The cell lines were incubated at two different times, 24 hours and 48 hours. After toxin incubation, the cells were washed and harvested as described in Example I.

To detect for the presence of cleaved SNAP-25 products, an aliquot from each harvested sample was analyzed by Western blot as described in Example I, except that harvested samples are separated by SDS-PAGE using 12% 26-well Criterion gels (Bio-Rad Laboratories, Hercules, Calif.), and the rabbit polyclonal α-SNAP-25₁₉₇ antibody serum was used as the primary antibody (see Example IV). Table 4 indicates the effects of gangliosides treatment on the ability of differentiated cell lines to uptake BoNT/A. These results indicate the lowest concentration of BoNT/A that will produce a detectable band of SNAP-25 cleavage product in the Western blot.

TABLE 3

Effects of Cell Differentiation on Neurotoxin Uptake of Candidate Cell Lines.						
			0.1 nM BoN	Γ/A Uptake		
Cell Line	Description	Source	Undifferentiated	Differentiated		
BE(2)-M17	Human neuroblastoma	ATCC CRL-2267	No	No		
Kelly	Human neuroblastoma	DSMZ ACC 355	No	No		
LA1-55n	Human neuroblastoma	ECACC 06041203	No	Yes		
N1E-115	Mouse neuroblastoma	ATCC CCL-2263	No	Not Tested		
N4TG3	Mouse neuroblastoma	DSMZ ACC 101	No	Not Tested		
N18	Mouse neuroblastoma/rat	ECACC 88112301	No	Yes		
	glioma hybrid					
Neuro-2a	Mouse neuroblastoma	ATCC CCL-131	Yes	Yes		
NG108-15	Mouse neuroblastoma/rat	ECACC 88112302	No	Not Tested		
	glioma hybrid					
PC12	Rat pheochromocytoma	ATCC CRL-1721	No	Yes		
SH-SY5Y	Human neuroblastoma	ATCC CRL-2266	No	Yes		
SiMa	Human neuroblastoma	DSMZ ACC 164	Yes	Yes		
SK-N-BE(2)-C	Human neuroblastoma	ATCC CRL-2271	No	Not Tested		

TABLE 4

Effects of GangliosideTreatment on Neurotoxin Uptake of Candidate Cell Lines.						
Uptake						
48 Hour Incubation						
118.8 pM						
Not Tested						
7.4 pM						
Not Tested						
Not Tested						
7.4 pM						
=						
7.4 pM						
Not Tested						
7.4 pM						
Not Tested						
1.9 pM						
Not Tested						

3. Development of Serum-free Media with Cell Differentiating Properties that Enhanced Neurotoxin Uptake of Candidate Cell Lines.

To determine whether treatment improvements that induce 25 cell differentiation could improve neurotoxin uptake, SiMa, Neuro-2a and PC12 cell lines were grown in various serumfree medium to induced differentiation. A suitable density of cells from a stock culture of the cell line being tested was plated into the wells of 24-well tissue culture plates contain- 30 ing 1 mL of various test serum-free medium. Parameters tested were 1) the effect of different basal media on BoNT/A uptake (MEM and RPMI 1649); 2) the effect of the presence or absence of neurotrophic factors on BoNT/A uptake (N2 supplement and B27 supplement); 3) the effect of the pres- 35 ence or absence of differentiation factors on BoNT/A uptake (retinoic acid and nerve growth factor); and 4) the effect of the presence or absence of serum on BoNT/A uptake (serum-free media and reduced serum media). As a control, a suitable density of cells from a stock culture of the cell line being 40 tested was plated into the wells of 24-well tissue culture plates containing 1 mL of a control serum-free media (Minimum Essential Medium, 2 mM GlutaMAXTTM I with Earle's salts. 0.1 mM Non-Essential Amino Acids, 10 mM HEPES, 1 mM Sodium Pyruvate, 100 units/mL Penicillin, and 100 μg/mL Streptomycin). These cells were incubated in a 37° C. incubator under 5% carbon dioxide until the cells differentiated, as assessed by standard and routine morphological criteria, such as growth arrest and neurite extension (approximately 2 to 3 days). The media was aspirated from each well and replaced with fresh serum-free media containing either 0 (untreated sample), 0.005 pM, 0.015 pM, 0.05 pM, 0.14 pM, 0.42 pM, 1.2 pM, 3.7 pM, 11 pM, 33 pM, 100 pM and 300 pM of a BoNT/A complex. In addition, the differentiated cells were treated with BoNT/A for 24 hrs followed by a media change and 48 hrs incubation in fresh media without toxin to 55 allow for the accumulation of SNAP-25 cleavage product. The cells were then washed and harvested as described in Example I.

TABLE 5

	IADLE 5	. (
	Serum Free Media Used for Differentiating Cell Lines.	
Cell Line	Test Serum Free Media Composition	
LA1-55n	Minimum Essential Medium with 2 mM GlutaMAX TM I with Earle's salts, 0.1 mM Non-Essential Amino-Acids, 10 mM HEPES, 1x N2 supplement, and 1 x B27 supplement	

TABLE 5-continued

	Serum Free Media Used for Differentiating Cell Lines.				
Cell Line Test Serum Free Media Composition					
	Neuro-2a	Minimum Essential Medium, 2 mM GlutaMAX TM I with Earle's salts, 1 x B27 supplement, 1 x N2 supplement, 0.1 mM Non-Essential Amino Acids, 10 mM HEPES			
)	PC12	RPMI 1640, 2 mM GlutaMAX TM, 1 x B27 supplement, 1 x N2 supplement, 10 mM HEPES, 1 mM sodium pyruvate, 1% Penicillin-Streptomycin and 50 ng/mL Nerve Growth Factor			
	SiMa	Minimum Essential Medium, 2 mM GlutaMAX TM I with Earle's salts, 1 x B27 supplement, 1 x N2 supplement, 0.1 mM Non-Essential Amino Acids, 10 mM HEPES			

To detect for the presence of a SNAP-25 cleavage product, an aliquot from each harvested sample was analyzed by Western blot as described in Example I, except that harvested samples are separated by SDS-PAGE using 12% 26-well Criterion gels (Bio-Rad Laboratories, Hercules, Calif.), and an α-SNAP-25 rabbit polyclonal antibody serum was used (see Example IV). The most optimized media determined for each cell line is shown in Table 5. Table 6 indicates the lowest amount of a SNAP-25 cleavage product detected when the cell lines were grown in this optimized serum-free medium. Use of the optimized serum-free medium resulted in the detection of BoNT/A activity signals with acceptable signalto-noise ratios in LA1-55n, Neuro-2a, PC-12, and SiMa cell lines (FIG. 2). For example, optimized differentiation conditions resulted in a 5-fold increase in SNAP-25 cleavage product detection as compared to the control serum-free media for Neuro-2a and PC12 cells, and almost 50-fold for SiMa cells. In addition, a minimal signal to noise ratio of 3:1 for the lower asymptote and 10:1 for the upper asymptote is required to develop a robust assay amenable for validation. With the exception of LA-1-55n, all optimized cell lines provided a signal to noise ratio for the lower asymptote of at least 3:1 when the signal detected from the 1.2 pM dose was compared to the background signal of 0 pM BoNT/A (FIG. 2). In addi-60 tion, all optimized cell lines provided a signal to noise ratio for the upper asymptote of at least 100:1 when the signal from the 300 pM dose was compared to the background signal of 0 pM BoNT/A (FIG. 2). These results indicate that any of these cell lines could be used to develop an immuno-based method 65 for detecting BoNT/A activity as disclosed in the present specification because the assay was detecting the presence of pM amounts of BoNT/A.

TABLE 6

Effects of Optimized Serum-Free Media on Neurotoxin Uptake of Candidate Cell Lines.							
			BoNT/A Uptake				
Cell Line	Description	Source	Control Serum- Free Media	Optimized Serum-Free Media			
BE(2)-M17	Human neuroblastoma	ATCC CRL-2267	Not Tested	Not Tested			
Kelly	Human neuroblastoma	DSMZ ACC 355	Not Tested	Not Tested			
LA1-55n	Human neuroblastoma	ECACC 06041203	7.4 pM	3.7 pM			
N1E-115	Mouse neuroblastoma	ATCC CCL-2263	Not Tested	Not Tested			
N4TG3	Mouse neuroblastoma	DSMZ ACC 101	Not Tested	Not Tested			
N18	Mouse neuroblastoma/rat glioma	ECACC 88112301	Not Tested	Not Tested			
	hybrid						
Neuro-2a	Mouse neuroblastoma	ATCC CCL-131	3.7 pM	0.8 pM			
NG108-15	Mouse neuroblastoma/rat glioma	ECACC 88112302	Not Tested	Not Tested			
DO12	hybrid	ATOO ODI 1721	20.16	0.42.34			
PC12	Rat pheochromocytoma	ATCC CRL-1721	2.0 pM	0.42 pM			
SH-SY5Y	Human neuroblastoma	ATCC CRL-2266	Not Tested	Not Tested			
SiMa	Human neuroblastoma	DSMZ ACC 164	0.23 pM	0.005 pM			
SK-N-BE(2)-C	Human neuroblastoma	ATCC CRL-2271	Not Tested	Not Tested			

Example III

Development of α-SNAP-25 Monoclonal Antibodies that Selectively Bind a SNAP-25 Epitope Having a Free Carboxyl-Terminus at the P₁ Residue of the BoNT/A Cleavage Site Scissile Bond

The following example illustrates how to make α -SNAP- ³⁰ 25 monoclonal antibodies that can selectively bind to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond.

1. Generation of α-SNAP-25 Monoclonal Antibodies.

To develop monoclonal α-SNAP-25 antibodies that bind an epitope comprising a carboxyl-terminus at the P_1 residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product, the 13-residue peptide CDSNKTRIDEAN-Q_{COOH} (SEQ ID NO: 38) was designed as a SNAP-25 cleav- 40 age product antigen. This peptide comprises a flexible linker region and a N-terminal Cysteine residue for conjugation to KLH and amino acids 186-197 of human SNAP-25 (SEQ ID NO: 5) with a carboxylated C-terminal glutamine (SEQ ID 45 were constructed: BirA-HisTag®-SNAP-25₁₃₄₋₁₉₇ of SEQ NO: 38). The generation of monoclonal antibodies to wellchosen, unique peptide sequences provides control over epitope specificity, allowing the identification of a particular subpopulation of protein among a pool of closely related isoforms. Blast searches revealed that this peptide has high homology only to SNAP-25 and almost no possible crossreactivity with other proteins in neuronal cells. The sequence was also carefully scrutinized by utilizing computer algorithms to determine hydropathy index, protein surface prob- 55 ability, regions of flexibility, and favorable secondary structure, followed by proper orientation and presentation of the chosen peptide sequence. The peptide was synthesized and conjugated to Keyhole Limpet Hemocyanin (KLH) to increase immunogenicity. Six Balb/c mice were immunized with this peptide, and after three immunizations in about eight weeks, the mice were bled for testing. The blood was allowed to clot by incubating at 4° C. for 60 minutes. The clotted blood was centrifuged at 10,000×g at 4° C. for 10 minutes to pellet 65 the cellular debris. The resulting serum sample was dispensed into 50 µl aliquots and stored at -20° C. until needed.

A similar strategy based on other SNAP-25 antigens disclosed in the present specification is used to develop 25 α-SNAP-25 monoclonal antibodies that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product. For example, the SNAP-25 antigen of

SEQ ID NO: 45 can be conjugated to KLH instead of the SNAP-25 antigen of SEQID NO: 38. As another example, the amino acids 186-197 of human SNAP-25 from the SNAP-25 antigen of SEQ ID NO: 38 can be replaced with SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEO ID NO: 42, SEO ID NO: 43, or SEO ID NO: 44.

2. Screening for the Presence of α-SNAP-25 Monoclonal Antibodies.

To determine the presence of an α-SNAP-25 monoclonal antibody that can selectively bind to a SNAP-25 antigen having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond, comparative ELISA and cellbased cleavage assay were performed using the extracted mouse serum. For comparative ELISA, two fusion proteins ID NO: 48 and the BirA-HisTag®-SNAP-25₁₃₄₋₂₀₆ of SEQ ID NO: 49. BirA-HisTag®-SNAP-25₁₃₄₋₁₉₇ comprised a naturally-biotinylated 16 amino acid BirA peptide of SEQ ID NO: 50 amino-terminally linked to a SNAP-25 peptide comprising amino acids 134-197 of SEQ ID NO: 5. BirA-HisTag®-SNAP-25₁₃₄₋₂₀₆ comprised a naturally-biotinylated 16 amino acid BirA peptide of SEQ ID NO: 50 aminoterminally linked to a SNAP-25 peptide comprising amino acids 134-206 of SEQ ID NO: 5. These two substrates were suspended in 1×PBS at a concentration of 10 pg/mL BirA- $HisTag@-SNAP-25_{134-197}$ and the BirA-HisTag@-SNAP- $25_{134-206}$. The BirA-HisTag®-SNAP- $25_{134-197}$ and the BirA-HisTag®-SNAP-25₁₃₄₋₂₀₆ were coated onto separate plates by adding approximately 100 \1 of the appropriate Substrate Solution and incubating the plates at room temperature for one hour. Washed plates were incubated at 37° C. for one hour in 0.5% BSA in 1×TBS containing a 1:10 to 1:100 dilution of an antibody-containing serum derived from one of the six immunized mice (Mouse 1, Mouse 2, Mouse 3, Mouse 4, Mouse 5, and Mouse 6). Primary antibody probed plates were

washed four times for 5 minutes each time in 200 µl TBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). Washed plates were incubated at 37° C. for 1 hour in 1×TBS containing a 1:10,000 dilution of goat polyclonal anti-mouse IgG antibody conjugated to Horseradish peroxidase (Pierce Biotechnology, Rockford, Ill.) as a secondary antibody. Secondary antibody-probed plates were washed four times in 200 µl TBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). Chromogenic detection of the labeled SNAP-25 products were visualized by chromogenic detection using ImmunoPure TMB substrate kit (Pierce Biotechnology, Rockford, Ill.). The development of a yellow color in the BirA-HisTag®-SNAP-25 $_{134-197}$ coated plates, but not the BirA-HisTag®-SNAP-25 $_{134-206}$ coated plates, indicated that the α -SNAP-25 antibody preferentially recognized the SNAP-25₁₉₇ cleavage product. The resulted indicated that of the six mice used for immunization, three mice (Mouse 2, Mouse 3, and Mouse 4) had higher titers and more $_{20}$ specificity towards a SNAP-25 antigen having a carboxylterminus at the P₁ residue of the BoNT/A cleavage site scissile bond.

These results were confirmed using an ELISA light chain activity assay. A 96-well Reacti-Bind Streptavidin coated ²⁵ plates (Pierce Biotechnology, Rockford, HI.) were prepared by adding approximately 100 µl of the following Substrate Solution: Rows A-C were coated with 100 µl of BirA-HisTag®-SNAP-25₁₃₄₋₁₉₇ at twelve different concentrations; $_{30}$ Rows D-H were coated with 100 µl of BirA-HisTag®-SNAP- $25_{134-206}$ at 10 µg/mL. The plates were washed by aspirating the Substrate Solution and rinsing each well three times with 200 µl TBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). Dilutions of BoNT/A were pre-reduced 35 at 37° C. for 20 minutes in BoNT/A Incubation Buffer (50 mM HEPES, pH 7.4, 1% fetal bovine serum, 10 μM ZnCl₂, 10 mM dithiothrietol) and 100 μl of the pre-reduced BoNT/A was added to the substrate-coated plates and incubated at 37° C. for 90 minutes. BoNT/A treated plates were washed by aspirating the BoNT/A Incubation Buffer and rinsing each plate three times with 200 µl TBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). Washed plates were incubated at 37° C. for one hour in 0.5% BSA in 1×TBS 45 containing a 1:10 to 1:100 dilution of the antibody-containing serum being tested. Primary antibody probed plates were washed four times for 5 minutes each time in 200 µl TBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). Washed plates were incubated at 37° C. for 1 hour in 1×TBS containing a 1:10,000 dilution of goat polyclonal anti-mouse IgG antibody conjugated to Horseradish peroxidase (Pierce Biotechnology, Rockford, Ill.) as a secondary antibody. Secondary antibody-probed plates were washed 55 four times in 200 µl TBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). Chromogenic detection of the labeled SNAP-25 products were visualized by chromogenic detection using ImmunoPure TMB substrate kit (Pierce Biotechnology, Rockford, Ill.). The development of a yellow color, which correlated with the presence of the SNAP-25₁₉₇ cleavage product was detected in BoNT/A treated samples, but not untreated controls, using antibody-containing serum derived from all six immunized mice (Mouse 1, Mouse 2, Mouse 3, Mouse 4, Mouse 5, and Mouse 6). Thus, the comparative ELISA analysis indicated that of the mice used for

68

immunization, three mice (Mouse 2, Mouse 3, and Mouse 4) had higher titers and more specificity towards a SNAP-25 antigen having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond.

For cell-based cleavage assay, a suitable density of PC12 cells were plated into 60 mm² tissue culture plates containing 3 mL of an appropriate serum medium (Table 1). The cells were grown in a 37° C. incubator under 5% carbon dioxide until cells reached the appropriate density. A 500 µL transfection solution was prepared by adding 250 µL of OPTI-MEM Reduced Serum Medium containing 15 μL of LipofectAmine 2000 (Invitrogen Inc., Carlsbad, Calif.) incubated at room temperature for 5 minutes to 250 µL of OPTI-MEM Reduced Serum Medium containing 10 pg of a pQBI-25/ GFP-BoNT/A-LC expression construct (SEQ ID NO: 51). The pQBI-25/GFP-BoNT/A-LC expression construct comprises a pQBI-25 expression vector (Qbiogene Inc., Carlsbad, Calif.) whose promoter elements are functionally linked to a polynucleotide encoding the GFP-BoNT/A light chain of SEQ ID NO: 52. This transfection mixture was incubated at room temperature for approximately 20 minutes. The media was replaced with fresh unsupplemented media and the 500 μL transfection solution was added to the cells. The cells were then incubated in a 37° C. incubator under 5% carbon dioxide for approximately 6 to 18 hours. The cells were washed and harvested as described in Example II. To detect for the presence of the cleaved SNAP-25₁₉₇ product, an aliquot from each harvested sample was analyzed by Western blot as described in Example II, except that the primary antibody used was a 1:1,000 dilution of the antibody-containing serum and the secondary antibody used was a 1:20,000 of mouse α-IgG Horseradish Peroxidase (Pierce Biotechnology, Rockford, Ill.). A single band corresponding to the SNAP-25₁₉₇ cleavage product was detected in BoNT/A treated samples, but not untreated controls, using antibody-containing serum derived from three mice (Mouse 2, Mouse 3, and Mouse 4). Thus, the cell-based cleavage assay indicated that of the mice used for immunization, three mice (Mouse 2, Mouse 3, and Mouse 4) had higher titers and more specificity towards a SNAP-25 antigen having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond.

3. Production of Hybridomas.

To make hybridomas producing α-SNAP-25 monoclonal antibodies that can selectively bind to a SNAP-25 antigen having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond, the spleen from Mouse 2 was harvested three days subsequent to a final "booster" immunization and the spleen cells were fused with myeloma cells P3-X63 Ag8.653 using standard hybridoma protocols. These cells were plated into five 96-well plates and hybrids were selected using HAT medium. Within 8-14 days after fusion, the first screening of the approximately 480 parent clones was carried out using comparative ELISA with the BirA- $HisTag@-SNAP-25_{134-197}$ and the BirA-HisTag@-SNAP- $25_{134-206}$ peptides coated in two separate plates. The comparative ELISA provided a quick screen method to identify hybridomas producing antibodies specific for the cleaved SNAP-25₁₉₇. The top 18 clones were subjected to further screening using the cell-based cleavage assay described above and immunostaining of LC/A transfected cells. (Table

TABLE 7

		nal Antibody Cell-Based Assay				
Clone	OD SNAP-25 ₁₉₇	OD SNAP-25 ₂₀₆	Ratio _{197/206}	Ratio _{206/197}	SNAP-25 ₁₉₇	SNAP-25 ₂₀₆
1D3	1.805	0.225	8.02	0.13	+++	_
1F12	0.365	0.093	3.92	0.25	_	_
1 G 10	0.590	0.137	4.31	0.23	++	_
1H1	0.335	0.121	2.77	0.36	_	_
1H8	0.310	0.302	1.03	0.97	+	_
2C9	0.139	0.274	0.51	1.97	-	_
2E2	0.892	0.036	24.78	0.04	++	_
2E4	0.228	0.069	3.30	0.30	+	_
2F11	1.095	1.781	0.61	1.63	-	-
3C1	1.268	0.053	23.92	0.04	++	_
3C3	0.809	0.052	15.56	0.06	++	_
3E1	0.086	0.155	0.55	1.80	0	-
3E8	2.048	0.053	38.64	0.03	+++	-
3G2	0.053	0.158	0.34	2.98	-	-
4D1	0.106	0.218	0.49	2.06	-	-
4G6	0.061	0.159	0.38	2.61	_	_
5A5	0.251	0.106	2.37	0.42	+	_
5F11	0.243	0.061	3.98	0.25	-	-

Clones 1D3, 1G10, 2E2, 3C1, 3C3, and 3E8 were further cloned by limiting dilution because the conditioned media produced by these clones comprised α -SNAP-25 antibodies with a preferential binding specificity having a ratio_{197/206} of at least 4:1 for the SNAP-25₁₉₇ cleavage product relative to the SNAP-25₂₀₆ uncleaved substrate and detected the SNAP-25₁₉₇-cleavage product using the cell-based cleavage assay and the immunostaining of PC12 cells transfected with GFP-LC/A. Similarly clones 2C9, 2F11, 3G2, 4D1 and 4G6 were further cloned by limiting dilution because the conditioned media produced by these clones comprised α -SNAP-25 anti- 35 bodies with a preferential binding specificity having a ratio_{206/197} of at least 1.5:1 for the SNAP-25₂₀₆ uncleaved substrate relative to the SNAP-25₁₉₇ cleavage product and detected the SNAP-25₂₀₆-uncleaved substrate using the cellbased cleavage assay. These single-cell derived clones were 40 screened again using comparative ELISA, cell-based cleavage, and immunostaining to confirm their affinity and specificity, and the antibodies were isotyped using standard procedures. Ascites were produced from clones 1D3B8 (IgM.k), 1G10A12 (IgG3.k), 2C9B10 (IgG3.k), 2E2A6 (IgG3.k), 45 2F11B6 (IgM.k), 3C1A5 (IgG2a.k), and 3C3E2 (IgG2a.k). Clone 3E8 stopped producing antibodies during the cloning process and could not be further evaluated.

4. Evaluation of Binding Specificity of α -SNAP-25 Monoclonal Antibodies.

To evaluate binding specificity of an α -SNAP-25 monoclonal antibody that can selectively bind to a SNAP-25 antigen having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond, ascites from clones 1D3B8, 1G10A12, 2C9B10, 2E2A6, 2F11B6, 3C1A5, and 55 3C3E2 were used to detect SNAP-25 cleavage product using the cell-based activity assay, immunocytochemistry and immunoprecipitation.

For the cell-based activity assay, binding specificity was determined by analyzing the ability of α -SNAP-25 antibody-containing ascites to detect the uncleaved SNAP-25₂₀₆ substrate and the cleaved SNAP-25₁₉₇ product by Western blot analysis. A suitable density of PC12 cells were plated into 60 mm² tissue culture plates containing 3 mL of an appropriate serum medium, grown in a 37° C. incubator under 5% carbon 65 dioxide until an appropriate cell density was reached, and transfected with the either a transfection solution lacking the

pQBI-25/GFP-BoNT/A-LC expression construct (untransfected cells) or a transfection solution containing the pQBI-25/GFP-BoNT/A-LC expression construct (transfected cells) as described above. The cells were washed and harvested as described in Example I. To detect for the presence of both the uncleaved SNAP-25206 substrate and the cleaved SNAP-25₁₉₇ product, an aliquot from each harvested sample was analyzed by Western blot as described in Example I, except that the primary antibody used was a 1:100 dilution of the α-SNAP-25 monoclonal antibody-containing ascites and the secondary antibody used was a 1:20,000 of α-mouse IgG conjugated to Horseradish Peroxidase (Pierce Biotechnology, Rockford, Ill.). In addition, three commercially available mouse α-SNAP-25 monoclonal antibodies were tested. SMI-81 (Sternberger Monoclonals Inc., Lutherville, Md.), an α -SNAP-25 antibody the manufacturer indicates detects both the uncleaved SNAP-25₂₀₆ substrate and the cleaved SNAP-25₁₉₇ product, was used at a 15,000 dilution according to the manufacturer's recommendations. MC-6050 (Research & Diagnostic Antibodies, Las Vegas, Nev.), an α-SNAP-25 antibody the manufacturer indicates detects both the uncleaved SNAP-25₂₀₆ substrate and the cleaved SNAP-25₁₉₇ product, was used at a 1:100 dilution according to the manufacturer's recommendations. MC-6053 (Research & Diagnostic Antibodies, Las Vegas, Nev.), an α -SNAP-25 antibody the manufacturer indicates detects only the cleaved SNAP-25₁₉₇ product, was used at a 1:100 dilution according to the manufacturer's recommendations.

Table 8 indicates the α -SNAP-25 antibody-containing ascites that detected only the SNAP-25 $_{197}$ cleavage product. The cell-based cleavage assay indicated that ascites produced from clones 1D3B8, 2C9B10, 2E2A6, 3C1A5, and 3C3E2 synthesize an α -SNAP-25 monoclonal antibody having high binding specificity for the SNAP-25 $_{197}$ cleavage product that allows for the selective recognition of this cleavage product relative to the SNAP-25 $_{206}$ uncleaved substrate. Commercial antibody SMI-81 detected the SNAP-25 $_{206}$ uncleaved substrate, but only poorly recognized the SNAP-25 $_{197}$ cleavage product (Table 8). Surprisingly, commercial antibody MC-6050 only detected the SNAP-25 $_{206}$ uncleaved substrate, and failed to recognize the SNAP-25 $_{197}$ cleavage product (Table 8). Even more surprisingly, commercial antibody MC-6050 only detected the SNAP-25 $_{206}$ uncleaved substrate,

and failed to recognize the SNAP-25₁₉₇ cleavage product, even though the manufacturer advertises that this antibody selectively detects the SNAP-25₁₉₇ cleavage product (Table 8). Thus, this analysis indicates that while 1D3B8, 2C9B10, 2E2A6, 3C1A5, and 3C3E2 exhibit suitable selectivity for the SNAP-25₁₉₇ cleavage product, 1G10A12 and 2F11B6 do not. In addition, commercial antibodies SMI-81, MC-6050 and MC-6053 all are unsuitable for the immuno-based methods disclosed in the present application because all failed to selectivity detect the SNAP-25₁₉₇ cleavage product.

For immunocytochemistry analysis, binding specificity was determined by analyzing the ability of α -SNAP-25 antibody-containing ascites to detect the uncleaved SNAP-25₂₀₆ substrate and the cleaved SNAP-25₁₉₇ product by immunostaining. See e.g., Ester Fernandez-Salas et al., Plasma Membrane Localization Signals in the Light Chain of Botulinum Neurotoxin, Proc. Natl. Acad. Sci., U.S.A. 101(9): 3208-3213 (2004). A suitable density of PC12 cells were plated, grown, and transfected with either a transfection solution lacking the pQBI-25/GFP-BoNT/A-LC expression construct (untransfected cells) or a transfection solution containing the pQBI-25/GFP-BoNT/A-LC expression construct (transfected cells) as described above. The cells were washed in 1×PBS and fixed in 5 mL of PAF at room temperature for 30 minutes. Fixed cells were washed in phosphate buffered saline, incubated in 5 mL of 0.5% Triton® X-100 (polyethylene glycol octylphenol ether) in 1×PBS, washed in 1×PBS, and permeabilized in 5 mL of methanol at -20° C. for six minutes. Permeabilized cells were blocked in 5 mL of 100 mM glycine at room temperature for 30 minutes, washed in 1×PBS, and blocked in 5 mL of 0.5% BSA in 1×PBS at room temperature for 30 minutes. Blocked cells were washed in 1×PBS and incubated at room temperature for two hours in 0.5% BSA in 1×PBS containing a 1:10 dilution of an ascites from a clonal hybridoma cell line being tested. Primary antibody probed cells were washed three times for 5 minutes each time in 1×PBS. Washed cells were incubated at room temperature for 2 hours in 1×PBS containing a 1:200 dilution of goat polyclonal anti-mouse immunoglobulin G, heavy and light chains (IgG, H+L) antibody conjugated to ALEXA® FLUOR 568 (Invitrogen Inc., Carlsbad, Calif.) as a secondary antibody. Secondary antibody-probed cells were washed three times for 5 minutes each time in 1×PBS. Washed cells were prepared for microscopic examination by mounting in VECTASHIELD® Mounting Media (Vector Laboratories, Burlingame, Calif.) and coverslipped. Images of signal detection were obtained with a Leica confocal microscope using appropriate laser settings. Table 8 indicates that the α -SNAP-25 antibody-containing ascites that specifically detected the SNAP-25₁₉₇-cleavage product. The immunocytochemistry analysis indicated that ascites produced from clones 1D3B8, 2C9B10, 2E2A6, 3C1A5, and 3C3E2 synthesize an α-SNAP-25 monoclonal antibody having high binding specificity for the SNAP-25₁₉₇ cleavage product that allows for the preferential recognition of this cleavage product relative to the SNAP-25₂₀₆ uncleaved substrate.

72

For immunoprecipitation analysis, binding specificity was determined by analyzing the ability of Protein A (HiTrapTM Protein A HP Columns, GE Healthcare, Amersham, Piscataway, N.J.), purified α-SNAP-25 monoclonal antibodies to precipitate the uncleaved SNAP-25₂₀₆ substrate and the cleaved SNAP-25₁₉₇ product. See e.g., Chapter 8 Storing and Purifying Antibodies, pp. 309-311, Harlow & Lane, supra, 1998a. A suitable density of PC12 cells were plated, grown, and transfected with either a transfection solution containing a pQBI-25/GFP expression construct (control cells; SEQ ID NO: 53) or a transfection solution containing the pQBI-25/ GFP-BoNT/A-LC expression construct (experimental cells) as described above. The pQBI-25/GFP expression construct comprises an expression vector whose promoter elements are functionally linked to a polynucleotide encoding GFP of SEQ ID NO: 54. After an overnight incubation, the cells were washed by aspirating the growth media and rinsing each well with 200 μl 1×PBS. To harvest the cells, the PBS was aspirated, the cells were lysed by adding an Immunoprecipitation Lysis Buffer comprising 50 mM HEPES, 150 mM NaCl, 1.5 mM MgCl₂, 1 mM EGDT, 10% glycerol, 1% Triton® X-100 (polyethylene glycol octylphenol ether) and a 1× COM-PLETETM Protease inhibitor cocktail (Roche Applied Biosciences, Indianapolis, Ind.) and incubating at 4° C. for one hour. The lysed cells were centrifuged at 3,000×g at 4° C. for 10 minutes to remove cellular debris and the supernatant transferred to a clean tube and diluted to a protein concentration of approximately 1 mg/mL. Approximately 5 pg of purified monoclonal antibody was added to 0.5 mL of diluted supernatant and incubated at 4° C. for two hours. After primary antibody incubation, approximately 50 µl of immobilized Protein G (Pierce Biotechnology, Rockford, Ill.) was added to the diluted supernatant and incubated at 4° C. for one hour. The incubated supernatant was washed three times for 30 minutes each time by adding 0.5 mL of Immunoprecipitation Lysis Buffer, centrifuging at 300×g at 4° C. for one minute to pellet the immobilized Protein G, and decanting the supernatant. After washing, the pellet was resuspended in 30 µl of 1×SDS Loading Buffer and the sample was heated to 95° C. for 5 minutes. To detect for the presence of both the uncleaved SNAP-25206 substrate and the cleaved SNAP-25₁₉₇ product, an aliquot from each harvested sample was analyzed by Western blot as described in Example I, except that the primary antibody used was a 1:1,000 dilution of the α-SNAP-25 polyclonal antibody serum (see Example IV) and the secondary antibody used was a 1:20,000 of rabbit α-IgG Horseradish Peroxidase (Pierce Biotechnology, Rockford, III.). Table 8 indicates the α -SNAP-25 antibody-containing ascites that specifically pulled down the SNAP-25₁₉₇cleavage product by immunoprecipitation analysis. The immunoprecipitation analysis indicated that ascites produced from clones 2E2A6 and 3C1A5 synthesize an α -SNAP-25 monoclonal antibody having high binding specificity for the SNAP-25₁₉₇ cleavage product that allows for the preferential recognition of this cleavage product relative to the SNAP-25₂₀₆ uncleaved substrate.

TABLE 8

Analysis of Clone Ascites Containing α-SNAP-25 Monoclonal Antibody						
	Cell-Based Assay		Immunocytochemistry		Immunoprecipitation	
Clone	SNAP-25 ₁₉₇	SNAP-25 ₂₀₆	SNAP-25 ₁₉₇	SNAP-25 ₂₀₆	SNAP-25 ₁₉₇	SNAP-25 ₂₀₆
1D3B8 1G10A12	++	- ++	++ Not Tested	– Not Tested	Not Tested Not Tested	Not Tested Not Tested

73

TABLE 8-continued

Analysis of Clone Ascites Containing α-SNAP-25 Monoclonal Antibody							
	Cell-Based Assay Immunocytochemistry			Immunopr	ecipitation		
Clone	SNAP-25 ₁₉₇	SNAP-25 ₂₀₆	SNAP-25 ₁₉₇	SNAP-25 ₂₀₆	SNAP-25 ₁₉₇	SNAP-25 ₂₀₆	
2C9B10	++	_	++	_	Not Tested	Not Tested	
2E2A6	++	_	++	_	++	-	
2F11B6	+	+	+	+	Not Tested	Not Tested	
3C1A5	++	_	++	_	++	_	
3C3E2	+	_	Not Tested	Not Tested	Not Tested	Not Tested	
MC-6050	-	+	Not Tested	Not Tested	Not Tested	Not Tested	
MC-6053	_	+	Not Tested	Not Tested	Not Tested	Not Tested	
SMI-81	-/+	++	Not Tested	Not Tested	Not Tested	Not Tested	

5. Evaluation of Binding Affinity of α-SNAP-25 Monoclonal Antibodies.

To determine the binding affinity of an α-SNAP-25 monoclonal antibody showing high binding specificity for either 20 the SNAP-25₁₉₇ cleavage product or the SNAP-25₂₀₆ uncleaved substrate, binding affinity assays were performed on a BIAcoreTM3000 instrument using carboxymethyl dextran (CM5) sensor chips (BIAcore, Inc., Piscataway, N.J.). Runs were conducted at 25° C. with HBS-EP buffer comprising 10 mM HEPES (pH 7.4), 150 mM sodium chloride, 3 mM EDTA, 0.005% (v/v) surfactant P20 at a flow rate of 10 μl/min. SNAP-25 peptides comprising amino acids 134-197 of SEQ ID NO: 5 (SNAP-25 $_{134-197}$) or amino acids 134-206 of SEQ ID NO: 5 (SNAP-25₁₃₄₋₂₀₆) were covalently attached 3 to the surface of the CM5 sensor chips using standard amine coupling. Briefly, the CM5 chips were activated by a 7 minute injection of a mixture of 0.2 M1-ethyl-3-(3-dimethylaminopropyl) carbodlimide and 0.05 M N-hydroxysuccinimide; the SNAP-25 peptides were then injected in 10 mM sodium 3 acetate (pH 4.0) for 20 min at a flow rate of 10 µl/min; and unreacted succinimide esters were blocked by a 7-min injection of 1 M ethanolamine hydrochloride, pH 8.5. The immobilized amount of SNAP- $25_{134-197}$ or SNAP- $25_{134-206}$ the chip was reflected by a 100-150 increase in response units 4 (about 0.10-0.15 ng/mm²). Antibody samples comprising either ascites or purified monoclonal antibodies produced from clones 1D3B8, 209B10, 2E2A6, 301A5, and 303E2, as well as, commercially available α-SNAP-25 antibodies were passed over the surface of the CM5 chips allowing an asso- 4 ciation time of 10 min and a dissociation time of 20 min. The surfaces were regenerated between runs by a 1 minute injection of 10 mM glycine-HCI (pH 2.5) at a flow rate of 15 μl/min. Sensorgram curves were fitted to a 1:1 kinetic binding model with the BIAevaluation $^{\text{TM}}$ 3.0 software.

The results indicate that both 2E2A6 and 3C1A5 were highly specific for cleaved SNAP-25₁₉₇ product over SNAP-25 uncleaved substrate (Table 9). When compared to the binding affinities of MC-6050 and MC-6053, 1D3B6 had an approximately 10-fold higher equilibrium disassociation 55 6. Sequencing of the Epitope from Isolated α-SNAP-25 constant for the SNAP-25 cleavage product relative to these commercial antibodies (Table 9). Interestingly, 2E2A6 had only a slightly lower equilibrium disassociation constant for the SNAP-25 cleavage product relative to these commercial antibodies (0.405 nM versus 0.497 and 0.508)(Table 9). As 60 neither of these commercial α-SNAP-25 antibodies selectively recognized the SNAP-25 cleavage product (Table 8), an equilibrium disassociation constant lower than about 0.5 nM appears, in part, critical to achieve such selectivity. Similarly, when compared to the binding affinities of MC-6050 and 65 MC-6053, 2E2A6 had an about at least one-fold slower off rate/dissociation constant $(6.74\times10^{-5} \text{ versus } 8.82\times10^{-4} \text{ s}^{-1})$

and $1.18 \times 10^{-3} \text{ s}^{-1}$) (Table 9). This further suggests that an off rate/dissociation constant lower than about 8.82×10⁻⁴ appears, in part, critical to achieve selective binding for the SNAP-25 cleavage product. This result is consistent with 1 D3B8, which had an off rate/dissociation constant of $5.78 \times$ 10^{-5} s^{-1} (Table 9).

TARIFO

IABLE 9							
Analysis of Binding Affinity α -SNAP-25 Monoclonal Antibodies							
SPR	PR 1D3B8 2E2A		2A6*				
Parameter	SNAP-25 ₁₉₇	SNAP-25 ₂₀₆ ^a	SNAP-25 ₁₉₇	SNAP-25 ₂₀₆ ^b			
$Ka (M^{-1} s^{-1})$	1.06×10^{6}	_	1.70×10^{6}	_			
$Kd\;(s^{-1})$	5.78×10^{-5}	_	(1.66×10^{5}) 1.53×10^{-4} (6.74×10^{-5})	(—) —			
KD (nM)	0.050	_	0.090 (0.405)	(—) — (—)			
SPR	3C:	3C1A5		9B10			
Parameter	SNAP-25 ₁₉₇	SNAP-25 ₂₀₆ ^c	SNAP-25 ₁₉₇	$\mathrm{SNAP-25}_{206}{}^d$			
Ka (M ⁻¹ s ⁻¹) Kd (s ⁻¹) KD (nM)	2.17×10^{5} 2.88×10^{-4} 1.33	_ _ _	$ \begin{array}{c} 1.15 \times 10^4 \\ 3.11 \times 10^{-4} \\ 27.1 \end{array} $	_ _ _			
SPR	MC-	6050	МС	-6053			
Parameter	SNAP-25 ₁₉₇	SNAP-25 ₂₀₆	SNAP-25 ₁₉₇	SNAP-25 ₂₀₆			
Ka (M ⁻¹ s ⁻¹) Kd (s ⁻¹) KD (nM)	1.78×10^{6} 8.82×10^{-4} 0.497	3.06×10^{2} 6.07×10^{-3} 19,800	2.32×10^{6} 1.18×10^{-3} 0.508	1.06×10^{2} 2.56×10^{-5} 240			

^{*}Two independent runs were conducted for this antibody with two different chips "No binding was observed when up to 125 nM of α -SNAP-25 monoclonal antibody 1D3B8 was passed over the surface of the CM5 sensor chip after a 10 minute association time. "No binding was observed when up to 10 µM of α -SNAP-25 monoclonal antibody 2E2A6 was passed over the surface of the CM5 sensor chip after a 10 minute association time. "No binding was observed when up to 100 nM of α -SNAP-25 monoclonal antibody 3C1A5 was passed over the surface of the CM5 sensor chip after a 10 minute association time. "No binding was observed when up to 100 nM of α -SNAP-25 monoclonal antibody 3C1A5 was passed over the surface of the CM5 sensor chip after a 10 minute association time.

Monoclonal Antibodies.

To determine the epitope of an isolated α -SNAP-25 monoclonal antibody that can selectively bind to a SNAP-25 antigen having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond, the polynucleotide molecule encoding the variable heavy (V_H) and variable light (V_L) chains of the α -SNAP-25 monoclonal antibody produced by hybridomas 1D3B8, 2C9B10, 2E2A6, 3C1A5 and 3C3E2 were sequenced. mRNA was extracted and purified from each hybridoma using standard protocols and reversed transcribed into cDNA using either an oligo dT anti-sense primer or a gene-specific (murine IgG1 CH and kappa CL)

TABLE 10-continued CDR Sequences of V_H and V_L domains from

 α -SNAP-25 Monoclonal Antibodies SEO Identified In CDR Sequence ID NO: V_H CDR 2 YLFPGNGNFEYNEKFKG 3C1A5 variant 2 $_{10}$ V $_{H}$ CDR 2 YINPYNDGSKYNEKFKG 3C1A5 variant 1 98 3C3E2 VH CDR 2 YIFPGNGNIEYNEKFKG 1D3B8 99 V_H CDR 3 KRMGY 2E2A6 100 3C1A5 variant 2 V_H CDR 3 2C9B10 KKMDY 101 1D3B8 V_H CDR 3 ARHLANTYYYFDY 3C1A5 variant 1 102 3C3E2 RSSQSIVHSNGNTYLE \mathbf{V}_L CDR 1 1D3B8 103 V, CDR 1 RTTENIYSYFV 2C9B10 104 \mathbf{V}_L CDR 1 RASKSVSTSGYSYMH 2E2A6 105 \mathbf{V}_L CDR 1 KASQDIKSYLS 3C1A5 106 V_L CDR 1 RASQRIGNYLH 3C3E2 107 V_L CDR 2 KVSNRFS 1D3B8 108 \mathbf{V}_L CDR 2 NAKSLAE 2C9B10 109 V_L CDR 2 LVSNLES 2E2A6 110 V_L CDR 2 YATSLAD 3C1A5 V_L CDR 2 YASQSIS 3C3E2 V_L CDR 3 FQGSHVPPT 1D3B8 V_L CDR 3 QHHYGTPYT 2C9B10 V_L CDR 3 QHIRELTRS 2E2A6 115 V_L CDR 3 LOHGESPFT 3C1A5 116 V_L CDR 3 QQSDTWPLT 3C3E2 117

Non-limiting examples of amino acid sequences comprising V_H CDR domain variants of the α -SNAP-25 monoclonal antibody produced by the hybridomas disclosed in the present specification include V_H CDR1 variant SEQ ID NO: 118 for 1D3B8; V_H CDR1 variant SEQ ID NO: 119 for 2C9B10, 2E2A6 and 3C1A5 V_H variant 2; V_H CDR1 variant SEQ ID NO: 120 for 3C1A5 V_H variant 1 and 3C3E2; V_H CDR2 variant SEQ ID NO: 121 for 1D3B8 and 2E2A6; V_H CDR2 variant SEQ ID NO: 122 for 2C9B10 and 3C1A5 V_H variant 55 2; V_H CDR2 variant SEQ ID NO: 123 for 3C1A5 V_H variant 1, and 3C3E2; \mathbf{V}_H CDR3 variant MDY for 1D3B8 and 2C9B10; V_H CDR3 variant MGY for 2E2A6 and 3C1A5 V_H variant 2; and V_H CDR3 variant SEQ ID NO: 124 for 3C1A5 V_H variant 1 and 3C3E2. Non-limiting examples of amino $_{\rm 60}$ acid sequences comprising ${\rm V}_{\rm L}$ CDR domain variants of the α -SNAP-25 monoclonal antibody produced by the hybridomas disclosed in the present specification include V_L CDR1 variant SEQ ID NO: 125 for 1D3B8; V_L CDR1 variant SEQ ID NO: 126 for 2C9B10; V_L CDR1 variant SEQ ID NO: 127 65 for 2E2A6; V_L CDR1 variant SEQ ID NO: 128 for 3C1A5; V_L CDR1 variant SEQ ID NO: 129 for 3C3E2; V, CDR2 variant

KVS for 1D3B8; V_L CDR2 variant NAK for 2C9B10; V_L

anti-sense primer. Specific murine and human constant domain primers were used to amplify the cDNA by PCR after cDNA production to determine the isotype of the antibody. Degenerate V_H and V_L primers were used to amplify the variable domains from the cDNA. For 5' RACE, a homopolymeric dCTP tail was added to the 3' end of the cDNA. The heavy and light chains were then amplified with an oligo dG sense primer and a gene specific (CH/KC) anti-sense primer. PCR products included the sequence of the signal peptide, variable domains and constant domains up to the anti-sense primer. The PCR products were gel purified to remove small fragments, and cloned into a blunt or TA vector for sequencing. Five independent clones for each chain were sequenced and alignments of V_H and V_L chains and consensus sequences were determined (Table 10). Methods used to determine the V_H and V_L amino acid sequences are described in, e.g., Roger A. Sabbadini, et al., Novel Bioactive Lipid Derivatives and Methods of Making and Using Same, U.S. Patent Publication 2007/0281320; and Peter Amersdorfer, et al., Molecular 20 Characterization of Murine Humoral Immune Response to Botulinum Neurotoxin Type A Binding Domain as Assessed by Using Phage Antibody Libraries, 65(9) Infect. Immun. 3743-3752, each of which is hereby incorporated by reference in its entirety. In addition, commercial services are available to sequence the variable heavy (V_H) and variable light (V_L) chains of an antibody and identify the CDR regions, see, e.g., Fusion Antibodies Ltd., Northern Ireland.

The polynucleotide sequence comprising the V_H and V_L chains of the α-SNAP-25 monoclonal antibody produced by the hybridomas disclosed in the present specification is as follows: 1D3B8 V_H (SEQ ID NO: 71), 2C9B10 V_H (SEQ ID NO: 73), 2E2A6 V_H (SEQ ID NO: 75), 3C1A5 V_H variant 1 (SEQ ID NO: 77), 3C1A5 V_H variant 2 (SEQ ID NO: 79), $3C3E2V_H$ (SEQ ID NO: 81); 1D3B8 V_L (SEQ ID NO: 83), 35 2C9B10 \mathbf{V}_L (SEQ ID NO: 85), 2E2A6 \mathbf{V}_L (SEQ ID NO: 87), $3C1A5 V_L$ (SEQ ID NO: 89), and $3C3E2 V_L$ (SEQ ID NO: 91). The amino acid sequence comprising the V_H and V_L chains of the α -SNAP-25 monoclonal antibody produced by the hybridomas disclosed in the present specification is as follows: 1D3B8 V_H (SEQ ID NO: 72), 2C9B10 V_H (SEQ ID NO: 74), 2E2A6 V_H (SEQ ID NO: 76), 3C1A5 V_H variant 1 (SEQ ID NO: 78), 3C1A5 V_H variant 2 (SEQ ID NO: 80), 3C3E2 V_H (SEQ ID NO: 82); 1D3B8 V_L (SEQ ID NO: 84), 2C9B10 V_L (SEQ ID NO: 86), 2E2A6 V_L (SEQ ID NO: 88), $3C1A5 V_L$ (SEQ ID NO: 90), and $3C3E2 V_L$ (SEQ ID NO: 92). The amino acid sequences comprising the V_H and V_L CDR domains of the α -SNAP-25 monoclonal antibody produced by the hybridomas 1D3B8, 2C9B10, 2E2A6, 3C1A5, and 3C3E2 are given in Table 10.

TABLE 10

	CDI	R Sequences of V_H ar $lpha$ -SNAP-25 Monoclor		1
CDR		Sequence	Identified In	SEQ ID NO:
V_H CDR	1	TFTDHSIH	2E2A6 2C9B10 3C1A5 variant 2	93
\mathbf{V}_H CDR	1	TFTNYVIH	3C1A5 variant 1 3C3E2	94
\mathbf{V}_H CDR	1	IFTDHALH	1D3B8	95
V _H CDR	2	YIFPGNGNIEYNDKFKG	2E2A6	96

CDR2 variant LVS for 2E2A6; \mathbf{V}_L CDR2 variant YAT for 3C1A5; and V_L CDR2 variant YAS for 3C3E2.

Example IV

Development of α-SNAP-25 Polyclonal Antibodies that Selectively Bind a SNAP-25 Epitope Having a Free Carboxyl-terminus at the P₁ Residue of the BoNT/A Cleavage Site Scissile Bond

The following example illustrates how to make α -SNAP-25 polyclonal antibodies that can selectively bind to a SNAP-25 epitope having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond.

epitope comprising a carboxyl-terminus at the P1 residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product, the 10-residue peptide CGGGRIDEANQ (SEQ ID NO: 46) was designed as a SNAP-25 cleavage product antigen. This peptide comprising a N-terminal Cys- 20 teine residue for conjugation to KLH, a G-spacer flexible spacer (GGG) linked to amino acids 191-197 of human SNAP-25 (SEQ ID NO: 5) and has a carboxylated C-terminal glutamine. Blast searches revealed that this peptide has high homology only to SNAP-25 and almost no possible cross- 25 reactivity with other proteins in neuronal cells. The Sequence was also carefully scrutinized by utilizing computer algorithms to determine hydropathy index, protein surface probability, regions of flexibility, and favorable secondary structure, followed by proper orientation and presentation of the 30 chosen peptide sequence. The peptide was synthesized and conjugated to Keyhole Limpet Hemocyanin (KLH) to increase immunogenicity. Before the animals were immunized, naïve rabbits were first screened against cell lysates from candidate cell lines in a Western blot in order to identify 35 animals that had no immunoreactivity to the proteins present in the cell lysates. Two pre-screened rabbits were immunized with this peptide, and after three immunizations in about eight weeks, the rabbits were bled for testing. The blood was allowed to clot by incubating at 4° C. for 60 minutes. The 40 clotted blood was centrifuged at 10,000×g at 4° C. for 10 minutes to pellet the cellular debris. The resulting serum sample was dispensed into 50 μL aliquots and stored at -20° C. until needed.

A similar strategy based on other SNAP-25 antigens dis- 45 closed in the present specification is used to develop α-SNAP-25 polyclonal antibodies that bind an epitope comprising a carboxyl-terminus at the P₁ residue from the BoNT/A cleavage site scissile bond from a SNAP-25 cleavage product. For example, the SNAP-25 antigen of SEQ ID 50 NO: 47 can be conjugated to KLH instead of the SNAP-25 antigen of SEQ ID NO: 46. As another example, the amino acids 191-197 of human SNAP-25 from the SNAP-25 antigen of SEQ ID NO: 38 can be replaced with SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, 55 SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 147 or SEQ ID NO: 148.

2. Screening for the Presence of α-SNAP-25 Polyclonal Anti**bodies**

To determine the presence of α -SNAP-25 polyclonal antibodies that can selectively bind to a SNAP-25 antigen having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond, comparative ELISA and cell-based cleavage assays were performed using the extracted rabbit serum 65 as described in Example III. The serum from both rabbits contained α -SNAP-25 polyclonal antibodies that can selec78

tively bind to a SNAP-25 antigen having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond. The α-SNAP-25 rabbit polyclonal antibodies were designated as NTP 22 and NTP 23.

3. Purification of α -SNAP-25 Polyclonal Antibodies.

To purify α-SNAP-25 polyclonal antibodies that can selectively bind to a SNAP-25 antigen having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond, NTP 22 and NTP 23 antibodies from rabbit serum were purified using affinity columns containing the SNAP-25 antigen of SEQ ID NO: 46.

4. Evaluation of Binding Specificity of α-SNAP-25 Polyclonal Antibodies.

To evaluate binding specificity of an α-SNAP-25 poly-To develop α-SNAP-25 polyclonal antibodies that bind an 15 clonal antibody that can selectively bind to a SNAP-25 antigen having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond, purified NTP 22 and NTP 23 α -SNAP-25 polyclonal antibodies were used to detect cleavage product using the cell-based activity assay, immunoprecipitation immunocytochemistry and described in Example III. The cell-based cleavage assay, immunocytochemistry analysis and Immunoprecipitation analysis all indicated that NTP 22 and NTP 23 α -SNAP-25 polyclonal antibodies did not cross-react with uncleaved SNAP-25. Thus both NTP 22 and NTP 23 have high binding specificity for the SNAP-25₁₉₇ cleavage product that allows for the preferential recognition of this cleavage product relative to the SNAP-25₂₀₆ uncleaved substrate. Affinity for the antigens can be determined using SPR in the BiAcore as described in Example III.

Example V

Component and Condition Preparation for a Sandwich ELISA

The following example illustrates how to identify and prepare the components and conditions necessary to perform a sandwich ELISA useful for conducting immuno-based methods of detecting BoNT/A activity by detecting a SNAP-25 cleavage product using a α-SNAP-25 monoclonal antibody specific for a SNAP-25 having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond.

1. Preparation of Cell Lysates from Cells Treated with BoNT/

To obtain a BoNT/A treated cell lysate for analysis, a suitable density of cells from a stock culture of Neuro-2a was seeded into a T175 flask containing 50 mL of a serum-free medium containing Minimum Essential Medium, 2 mM GlutaMAXTTM I with Earle's salts, 1×B27 supplement, 1×N2 supplement, 0.1 mM Non-Essential Amino Acids, 10 mM HEPES. These cells were incubated in a 37° C. incubator under 5% carbon dioxide until the cells differentiated, as assessed by standard and routine morphological criteria, such as growth arrest and neurite extension (approximately 2 to 3 days). As a control, a suitable density of cells from a stock culture of Neuro-2a was seeded into a T175 flask containing 50 mL of an appropriate growth medium (Table 1). These undifferentiated control cells were grown in a 37° C. incuba-60 tor under 5% carbon dioxide until 50% confluence was reached (approximately 18 hours). The media from both differentiated and undifferentiated control cultures was aspirated from each well and replaced with fresh media containing either 0 (untreated sample) or 10 nM of a BoNT/A complex. After an overnight incubation, the cells were washed and the cells harvested by lysing in freshly prepared Triton X-100 Lysis Buffer (50 mM HEPES, 150 mM NaCl,

1.5 mM MgCl₂, 1 mM EGTA, 1% Triton X-100) at 4° C. for 30 minutes with constant agitation. Lysed cells were centrifuged at 4000 rpm for 20 min at 4° C. to eliminate debris using a bench-top centrifuge. The protein concentrations of cell lysates were measured by Bradford assay.

79

2. Preparation and Identification of Sandwich ELISA Components.

To identify an appropriate capture antibody-detection antibody pair an ECL sandwich ELISA analysis was conducted on twenty-six different combinations of capture and detection antibody pairs comprising eleven different α-SNAP-25 capture antibodies and seven different α-SNAP-25 detection antibodies (Table 12). The α-SNAP-25 antibodies used were 2E2A6 and 3C1A5 α-SNAP-25 mouse monoclonal antibodies disclosed in the present specification, SMI-81, MC-6050, and MC-6053 α-SNAP-25 mouse monoclonal antibodies disclosed in the present specification, NTP 23 α-SNAP-25 rabbit polyclonal antibodies disclosed in the present specification, S9684 α-SNAP-25 rabbit polyclonal antibodies (Sigma, St. Louis, Mo.), H-50 α-SNAP-25 rabbit polyclonal antibodies (Santa Cruz Biotechnology, Inc., Santa Cruz, Calif.), C-18 α-SNAP-25 goat polyclonal antibodies (Santa Cruz Biotechnology, Inc., Santa Cruz, Calif.), N-19 α-SNAP-25 goat polyclonal antibodies (Santa Cruz Biotechnology, Inc., Santa Cruz, Calif.), and SP12 α-SNAP-25 mouse polyclonal antibodies (Santa Cruz Biotechnology, Inc., Santa Cruz, Calif.).

To prepare the capture antibody solution, the $\alpha\text{-}SNAP\text{-}25$ monoclonal antibodies contained in the ascites from hybridoma cell lines 2E2A6 and 3C1A5 as well as the $\alpha\text{-}SNAP\text{-}25$ MC-6050 and MC-6053 monoclonal antibodies were purified using a standard Protein A purification protocol. All other $\alpha\text{-}SNAP\text{-}25$ antibodies were purchased as purified antibodies

To prepare the detection antibody solution, the appropriate α -SNAP-25 antibody was conjugated to Ruthenium(II)-trisbipyridine-(4-methylsulfonate) NHS ester labeling reagent (Meso Scale Discovery, Gaithersburg, Md.) according to the manufacturer's instructions (Meso Scale Discovery, Gaithersburg, Md.). The conjugation reaction was performed by adding 30 μ L of distilled water reconstituted MSD SULFO-TAGTM stock solution to 200 μ L of 2 mg/mL α -SNAP-25 polyclonal antibodies and incubating the reaction at room temperature for 2 hours in the dark. The labeled antibodies were purified using a standard spin column protocol and the protein concentration determined using a standard colorimetric protein assay. The absorbance of the α -SNAP-25 antibody/MSD SULFO-TAGTM conjugate was measured at 455

nm using a spectrophotometer to determine the concentration in moles per liter. The detection antibody solution was stored

80

at 4° C. until needed.

To prepare the solid phase support comprising the capture antibody that is specific for a SNAP-25 cleavage product, approximately 5 μL of the appropriate $\alpha\textsc{-SNAP-25}$ monoclonal antibody solution (20 pg/mL in 1×PBS) is added to each well of a 96-well MSD High Bind plate and the solution is allowed to air dry in a biological safety cabinet for 2-3 hours in order to liquid evaporate the solution. The capture antibody-bound wells were then blocked by adding 150 μL of Blocking Buffer comprising 2% Amersham Blocking Reagent (GE Life Sciences, Piscataway, N.J.) and 10% goat serum (VWR, West Chester, Pa.) at room temperature for 2 hours. Blocked plates were sealed and stored at 4° C. until needed.

To detect the presence of a cleaved SNAP-25 cleavage product by ECL sandwich ELISA analysis, the Blocking Buffer from stored plates was aspirated from the wells, 25 µL of a lysate from cells treated with BoNT/A, as described above, was added to each well and the plates were incubated at 4° C. for overnight. Plate wells were washed three times by aspirating the cell lysate and rinsing each well three times with 200 μL 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). After washing, 25 μl of 5 μg/mL detection antibody solution comprising 2% Amersham Blocking Reagent in 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate) was added to each well, the plate was sealed, and the sealed plate was incubated at room temperature at room temperature for 1 hour with shaking. After detection antibody incubation, the wells were washed three times with 200 µL 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). After washing 150 μL of 1× Read Buffer (Meso Scale Discovery, Gaithersburg, Md.) was added to each well and the plates were read using a SECTOR™ Imager 6000 Image Reader (Meso Scale Discovery, Gaithersburg, Md.). A ratio was calculated by dividing the signal obtained at the 10 nM dose for each antibody-pair by the signal obtained at the 0 nM dose for each antibody-pair (Table 12). These results indicated that among the twenty-six different combinations of antibody pairs tested, only three antibody pairs had signal-to-noise ratios above 10:1 for the higher dose tested: Pair No. 1 (2E2A6 mouse mAb and S9684 rabbit pAb), Pair No. 4 (3C1A5 mouse mAb and S9684 rabbit pAb), and Pair No. 18 (S9684 rabbit pAb and 2E2A6 mouse mAb). Antibody Pair 1 was chosen for further assay development.

TABLE 12

Screening of α-SNAP-25 Antibody Combinations												
Antibody Pair No.	Capture Antibody	Detection Antibody	Detection SNAP- 25 cleavage product	Detection SNAP- 25 uncleaved substrate	Signal/Noise Ratio (10 nM/0 nM)							
1	2E2A6 mouse mAb	S9684 rabbit pAb	Yes	No	26.6:1							
2	2E2A6 mouse mAb	N-19 goat pAb	Yes	No	7.3:1							
3	2E2A6 mouse mAb	H-50 rabbit pAb	Yes	No	0.9:1							
4	3C1A5 mouse mAb	S9684 rabbit pAb	Yes	No	12.1:1							
5	3C1A5 mouse mAb	N-19 goat pAb	Yes	No	1.9:1							
6	3C1A5 mouse mAb	H-50 rabbit pAb	Yes	No	0.9:1							
7	C-18 goat pAb	S9684 rabbit pAb	No	No	0.8:1							
8	C-18 goat pAb	N-19 goat pAb	No	No	0.9:1							
9	C-18 goat pAb	H-50 rabbit pAb	No	No	0.9:1							
10	H-50 rabbit pAb	2E2A6 mouse mAb	Yes	No	0.9:1							
11	H-50 rabbit pAb	C-18 goat pAb	No	No	1.0:1							
12	N-19 goat pAb	2E2A6 mouse mAb	Yes	No	0.9:1							
13	N-19 goat pAb	C-18 goat pAb	No	No	1.1:1							
14	NTP 23 rabbit pAb	N-19 goat pAb	Yes	No	1.2:1							

TABLE 12-continued

Screening of α-SNAP-25 Antibody Combinations													
Antibody Pair No.	Capture Antibody	Detection Antibody	Detection SNAP- 25 cleavage product	Detection SNAP- 25 uncleaved substrate	Signal/Noise Ratio (10 nM/0 nM)								
15	NTP 23 rabbit pAb	C-18 goat pAb	No	No	1.1:1								
16	NTP 23 rabbit pAb	SP12 mouse pAb	Yes	No	1.3:1								
17	NTP 23 rabbit pAb	H-50 rabbit pAb	Yes	No	1.1:1								
18	S9684 rabbit pAb	2E2A6 mouse mAb	Yes	No	21.3:1								
19	S9684 rabbit pAb	C-18 goat pAb	No	No	0.7:1								
20	S9684 rabbit pAb	SMI-81mouse mAb	Yes	Yes	1.2:1								
21	SMI-81 mouse mAb	S9684 rabbit pAb	Yes	Yes	1.1:1								
22	SMI-81 mouse mAb	N-19 goat pAb	Yes	Yes	1.0:1								
23	SMI-81 mouse mAb	C-18 goat pAb	No	No	0.8:1								
24	SP12 mouse pAb	C-18 goat pAb	No	No	1.0:1								
25	MC-6050 mouse mAb	S9684 rabbit pAb	Yes	Yes	5.0:1								
26	MC-6053 mouse mAb	S9684 rabbit pAb	Yes	Yes	7.1:1								

3. Optimization of Cell Differentiation Conditions.

To determine the optimal differentiation condition for a cell line comprising cells susceptible to BoNT/A intoxication when using a sandwich ELISA detection system, both various cell culture media and length of differentiation time were ²⁵ tested.

To determine an optimal differentiation medium, a suitable density of cells from a SiMa cell line was plated into the wells of Collagen IV coated 24-well cell culture plates containing 1 mL of one of the following medias and differentiation supplements: 1) RPMI 1640, 10% fetal bovine serum, 1% Penicillin-Streptomycin, 2 mM L-Glutamine, and 25 μg/mL GT1b); 2) RPMI-1640, 1×B27 supplement, 1×N2 supplement, and 25 μg/mL GT1b; 3) Minimum Essential Medium, 1×B27 35 supplement, 1×N2 supplement, and 25 μg/mL GT1b; and 4) RPMI-1640, 10% BSA, 1×N2 supplement, 1×NGF supplement, and 25 μg/mL GT1b. Cells were incubated in a 37° C. incubator under 5% carbon dioxide until the cells differentiated, as assessed by standard and routine morphological cri- 40 teria, such as growth arrest and neurite extension (approximately 3 days). The media was aspirated from each well and replaced with fresh media containing either 0 (untreated sample), 0.2 pM, 2 pM, or 20 pM of a BoNT/A complex. After an overnight treatment, the cells were washed, incubated for 45 an additional two days without toxin to allow for the cleavage of the SNAP-25 substrate, and harvested as described above in Section 1. The protein concentrations of cell lysates were measured by Bradford assay. Detection of the presence of cleaved SNAP-25 product by ECL sandwich ELISA analysis 50 was performed as described above using Antibody Pair 1. As discussed in Example I, undifferentiated cells did not take up toxin as effectively as differentiated cells. The most effective differentiation medium for increasing BoNT/A uptake and consequently SNAP-25 cleavage medium 3 (MEM+N2+ 55 B27), followed by medium 2 (RPMI-1640+N2+B27), and medium 4 (RPMI-1640+N2+NGF+BSA) (FIG. 3). Cells cultured in medium 2 resulted in more cleavage of the SNAP-25 as compared to the other media.

To determine an optimal differentiation time, a suitable 60 density of cells from a SiMa cell line was plated into the wells of poly-D-lysine coated 96-well cell culture plates containing 100 μL of a serum-free medium containing Minimum Essential Medium, 2 mM GlutaMAXTTM I with Earle's salts, 1×B27 supplement, 1×N2 supplement, 0.1 mM Non-Essential Amino Acids, 10 mM HEPES and 25 $\mu g/mL$ GT1b. Cells were plated at four different days to obtain a differentiation

time course testing 6 hrs, 24 h, 48 hrs, and 72 hrs, and were incubated in a 37° C. incubator under 5% carbon dioxide The media was aspirated from each well and replaced with fresh media containing either 0 (untreated sample), 0.1 pM, 0.2 pM, 0.4 pM, 0.8 pM, 1.6 pM, 3.1 pM, 6.25 pM, 12.5 pM, or 25 pM of a BoNT/A complex. After an overnight treatment, the cells were washed, incubated for an additional two days without toxin to allow for the cleavage of the SNAP-25 substrate, and harvested as described above in Section 1. After harvesting, the protein concentrations of cell lysates and detection of the presence of cleaved SNAP-25 product by ECL sandwich ELISA analysis were performed as described above. The raw data obtained from the ECL imager was then transferred to SigmaPlot v. 9.0 and a 4-parameter logistics fit was used to define the dose-response curves. There were no constraints used for the 4-parameter logistic function when plotting the data. Graphical reports were generated using the following analysis: R2 (correlation coefficient), a (Max for data set), b (hillslope), and X0±SE (EC₅₀ value±standard error). The results indicated that EC_{50} values of less than 2 pM could be achieved with cells differentiated for 48-72 hrs (FIG. 4). The finding that differentiated cells could be used between 48 hrs to 72 hrs of differentiation, with no significant changes on the performance of the cells, highlights the robustness of the assay. Although differentiation time periods less than 48 hrs may not be suitable for picomolar testing of formulated product, these lesser differentiation times are sensitive enough for bulk drug substance testing.

4. Optimization of BoNT/A Treatment Time.

To determine the optimal length of time cells form a cell line need to be treated with a BoNT/A, various lengths of BoNT/A treatment times were tested. A suitable density of cells from a SiMa cell line was plated into the wells of poly-D-lysine coated 96-well cell culture plates containing 100 μL of a serum-free medium containing Minimum Essential Medium, 2 mM GlutaMAXTTM I with Earle's salts, 1×B27 supplement, 1×N2 supplement, 0.1 mM Non-Essential Amino Acids, 10 mM HEPES and 25 µg/mL GT1b. Cells were plated and incubated in a 37° C. incubator under 5% carbon dioxide until the cells differentiated, as assessed by standard and routine morphological criteria, such as growth arrest and neurite extension (approximately 3 days). The media was aspirated from each well and replaced with fresh media containing either 0 (untreated sample), 0.1 pM, 0.2 pM, 0.4 pM, 0.8 pM, 1.6 pM, 3.1 pM, 6.3 pM, 12.5 pM, or 25 pM of a BoNT/A complex in RPMI 1640 growth medium in

triplicate to generate a full dose-response. Five different BoNT/A treatment length regimens were performed: 1) a 6 hrs BoNT/A treatment, removal and washing of cells, an incubation of cells for 18 hr without BoNT/A, and harvesting of cells as described above in Section 1; 2) a 24 hrs BoNT/A 5 treatment, removal and washing of cells, and harvesting of cells as described above in Section 1; 3) a 24 hrs BoNT/A treatment, removal and washing of cells, an incubation of cells for 24 hr without BoNT/A, and harvesting of cells as described above in Section 1; 4) a 24 hrs BoNT/A incubation, 10 removal and washing of cells, an incubation of cells for 48 hr without BoNT/A, and harvesting of cells as described above in Section 1; and 5) a 24 hrs BoNT/A incubation, removal and washing of cells, an incubation of cells for 72 hr without BoNT/A, and harvesting of cells as described above in Sec- 15 tion 1. After harvesting, the protein concentrations of cell lysates, detection of SNAP-25 cleavage product by ECL sandwich ELISA performed, and the EC50 calculated as described above. The results indicate that EC_{50} values of less than 2 pM could be achieved with any of the BoNT/A treat- 20 ments tested (FIG. 5). Interestingly, the 24 hrs+24 hrs, 24 hrs+48 hrs, and 24 hrs+73 hrs BoNT/A treatment regimes generated essentially the same EC_{50} values, 1.0 pM, 1.1, pM and 0.9 pM respectively. The EC_{50} values generated for the 6hrs+18 hrs and 24 hrs+0 hrs BoNT/A treatment regimes were 25 1.7 pM and 1.6 pM respectively. Although the amount of signal obtained was lower, these results indicate that BoNT/A treatment times between 6 hrs to 24 hrs plus one day to three days post-treatment incubation can be used to generate an EC₅₀ that is adequate for detecting BoNT/A activity and give 30 flexibility in the assay's overall time course.

5. Sensitivity of Immuno-Based Method of Detecting BoNT/A Activity.

To evaluate the sensitivity of the immuno-based methods of detecting BoNT/A activity disclosed in the present speci- 35 fication, the timing of BoNT/A uptake by cells susceptible to BoNT/A intoxication was determined. A suitable density of cells from a SiMa cell line was plated into the wells of poly-D-lysine coated 96-well cell culture plates containing 100 μL of a serum-free medium containing Minimum Essential 40 Medium, 2 mM GlutaMAXTTM I with Earle's salts, 1×B27 supplement, 1×N2 supplement, 0.1 mM Non-Essential Amino Acids, 10 mM HEPES and 20 µg/mL GT1b. Cells were incubated in a 37° C. incubator under 5% carbon dioxide until the cells differentiated, as assessed by standard and 45 routine morphological criteria, such as growth arrest and neurite extension (approximately 3 days). The media was aspirated from each well, replaced with fresh media containing 1 nM of a BoNT/A complex, and the BoNT/A treated cells were incubated at six different time points of 0 min (neuro- 50 toxin added and then immediately removed), 5 min, 10 min, 20 min, 30 min, and 60 min. A negative control of media with no BoNT/A (0 nM) was used. After incubation, the cells were washed and harvested as described above in Section 1. After harvesting, the protein concentrations of cell lysates, detec- 55 tion of SNAP-25 cleavage product by ECL sandwich ELISA performed, and the EC₅₀ calculated as described above. The results indicated that uptake of BoNT/A by the cells took less than one minute before producing significant amounts of SNAP-25 cleavage product over background (FIG. 6). 6. Specificity of Immuno-Based Method of Detecting

BoNT/A Activity.

To evaluate the specificity of the immuno-based methods of detecting BoNT/A activity disclosed in the present specification, the capacity of cells susceptible to BoNT/A intoxi- 65 cation to accurately distinguish BoNT/A to the exclusion of partially inactivated BoNT/A was determined. A suitable

84

density of cells from a SiMa cell line was plated into the wells of poly-D-lysine coated 96-well cell culture plates containing 100 uL of a serum-free medium containing Minimum Essential Medium, 2 mM GlutaMAXTTM I with Earle's salts, 1×B27 supplement, 1×N2 supplement, 0.1 mM Non-Essential Amino Acids, 10 mM HEPES and 25 µg/mL GT1b. Cells were incubated in a 37° C. incubator under 5% carbon dioxide until the cells differentiated, as assessed by standard and routine morphological criteria, such as growth arrest and neurite extension (approximately 3 days). The media was aspirated from each well and replaced with fresh media containing either 1) 0 (untreated sample), 0.03 pM, 0.1 pM, 0.31 pM, 0.93 pM, 2.78 pM, 8.33 pM, and 25 pM, of a BoNT/A complex; 2) 0, 0.14 nM, 0.41 nM, 1.23 nM, 3.7 nM, 11.11 nM, 33.33 nM, and 100 nM of an inactive BoNT/A (iBoNT/ A); or 3) 0, 0.14 nM, 0.41 nM, 1.23 nM, 3.7 nM, 11.11 nM, 33.33 nM, and 100 nM of an LH_N/A fragment. The iBoNT/A contains a mutation in the zinc binding domain of the light chain that completely inactivates the metalloprotease activity of the neurotoxin, see, e.g., Liqing Zhou, et al., Expression and Purification of the Light Chain of Botulinum Neurotoxin A: A Single Mutation Abolishes its Cleavage of SNAP-25 and Neurotoxicity after Reconstitution with the Heavy Chain, Biochemistry 34: 15175-15181 (1995), which is hereby incorporated by reference in its entirety. The LH_N/A fragment lacks the binding domain, but contains an intact translocation domain and light chain, see, e.g., Clifford C. Shone, et al., Recombinant Toxin Fragments, U.S. Pat. No. 6,461,617, which is hereby incorporated by reference in its entirety. After 24 hrs treatment, the cells were washed, incubated for an additional two days without toxin to allow for the cleavage of SNAP-25 substrate, and harvested as described above in Section 1. After harvesting, the protein concentrations of cell lysates, detection of SNAP-25 cleavage product by ECL sandwich ELISA performed, and the EC_{50} calculated as described above. The results indicate that the binding affinity of cells for iBoNT/A and LH_N/A (EC₅₀>100 nM) are at least 60,000 lower than the binding affinity for BoNT/A (EC₅₀=1.6 pM) (FIG. 7). No SNAP-25 cleavage product was detected in cells treated with iBoNT/A at all concentrations tested. Although a low amount of SNAP-25 cleavage product was detected in cells treated with the highest dose of the LH_N/A fragment, this activity is due to non-specific uptake of this fragment due to the activity of the translocation domain. Thus, the results indicate that the immuno-based methods of detecting BoNT/A activity disclosed in the present specification can measure all the steps involved in the intoxication process whereby a BoNT/A proteolytically cleaves a SNAP-25 substrate and encompasses the binding of a BoNT/A to a BoNT/A receptor, the internalization of the neurotoxin/receptor complex, the translocation of the BoNT/A light chain from an intracellular vesicle into the cytoplasm and the proteolytic cleavage of a SNAP-25.

Example VI

Immuno-Based Method of Detecting BoNT/A Activity Using ECL Sandwich ELISA

The following example illustrates immuno-based methods of detecting BoNT/A activity by detecting a SNAP-25 cleavage product using a α-SNAP-25 monoclonal antibody specific for a SNAP-25 cleavage product having a carboxylterminus at the P₁ residue of the BoNT/A cleavage site scissile bond using ECL sandwich ELISA.

To prepare a lysate from cells treated with a BoNT/A, a suitable density of cells from an established cell line was

86 Example VII

plated into the wells of 96-well tissue culture plates containing 100 µL of a serum-free medium containing Minimum Essential Medium, 2 mM GlutaMAXTTM I with Earle's salts, 1×B27 supplement, 1×N2 supplement, 0.1 mM Non-Essential Amino Acids, 10 mM HEPES and 25 μg/mL GT1b (see Examples I and II). These cells were incubated in a 37° C. incubator under 5% carbon dioxide until the cells differentiated, as assessed by standard and routine morphological criteria, such as growth arrest and neurite extension (approximately 3 days). The media from the differentiated cells was aspirated from each well and replaced with fresh media containing either 0 (untreated sample), 0.03 pM, 0.1 pM, 0.3 pM, 0.9 pM, 2.8 pM, 8.3 pM, and 25 pM of a BoNT/A complex. After a 24 hr treatment, the cells were washed, and incubated 15 for an additional two days without toxin. To cells were harvested as described in Example V.

To prepare the α -SNAP-25 capture antibody solution, the α -SNAP-25 monoclonal antibody contained in the ascites from hybridoma cell line 2E2A6 was purified using a standard Protein A purification protocol To prepare the α -SNAP-25 detection antibody solution, α -SNAP-25 rabbit polyclonal antibody S9684 (Sigma, St. Louis, Mo.) was conjugated to Ruthenium(II)-tris-bipyridine-(4-methylsulfonate) NHS ester labeling reagent (Meso Scale Discovery, Gaithersburg, Md.) according to the manufacturer's instructions (Meso Scale Discovery, Gaithersburg, Md.). The conjugation reaction, purification of labeled α -SNAP-25 antibody, concentration determination and storage were as described in Example V

To prepare the solid phase support comprising the capture antibody that is specific for a SNAP-25 cleaved product, approximately 5 μL of $\alpha\textsc{-SNAP-25}$ monoclonal antibody 2E2A6 solution (20 $\mu g/mL$ in 1×PBS) was added to each well of a 96-well MSD High Bind plate and the solution is allowed to air dry in a biological safety cabinet for 2-3 hours in order to liquid evaporate the solution. The capture antibody-bound wells were then blocked and used directly to detect BoNT/A activity.

To detect the presence of a cleaved SNAP-25 product by ECL sandwich ELISA analysis, the Blocking Buffer from stored plates was aspirated from the wells, 25 µL of a lysate from cells treated with BoNT/A was added to each well and the plates were incubated at 4° C. for overnight. Plate wells 45 were washed three times by aspirating the cell lysate and rinsing each well three times with 200 uL 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). After washing, 25 µl of 5 µg/mL detection antibody solution comprising 2% Amersham Blocking Reagent in 1xPBS, 50 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate) was added to each well, the plate was sealed, and the sealed plate was incubated at room temperature at room temperature for 1 hour with shaking. After detection antibody incubation, the wells were washed three times with 200 µL 55 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). After washing 150 μL of 1× Read Buffer (Meso Scale Discovery, Gaithersburg, Md.) was added to each well and the plates were read using a SECTORTM Imager 6000 Image Reader (Meso Scale Discovery, Gaithersburg, Md.). 60 The collected data was analyzed and the EC₅₀ calculated as described in Example V. A representative result is shown in FIG. 8. These results indicated that on average 1.0 pM of BoNT/A at the EC₅₀ was detected (a range of about 0.3 pM to about 2.0 pM) with a signal-to-noise ratio for the lower 65 asymptote of about 15:1 to about 20:1 and a signal-to-noise ratio for the upper asymptote of about 20:1 to about 500:1.

Immuno-Based method of Detecting BoNT/A Activity Using CL Sandwich ELISA

The following example illustrates immuno-based methods of detecting BoNT/A activity by detecting a SNAP-25 cleavage product using a $\alpha\textsc{-}\text{SNAP-25}$ monoclonal antibody specific for a SNAP-25 having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond by CL sandwich ELISA.

Lysate from cells treated with a BoNT/A and the α -SNAP-25 capture antibody solution were prepared as described in Example VI.

To prepare the α -SNAP-25 detection antibody solution, α-SNAP-25 polyclonal antibody S9684 (Sigma, St. Louis, Mo.) was conjugated to Horseradish peroxidase (HRP) according to the manufacturer's instructions (Pierce Biotechnology, Inc., Rockford, Ill.). The conjugation reaction was performed by adding to 500 μL of 1 mg/mL α-SNAP-25 polyclonal antibodies to a vial containing lyophilized activated peroxidase, mixing the components, and then adding 10 μL of sodium cyanoborohydride. This reaction mixture was incubated at room temperature for 1 hour in a fume hood. After quenching the reaction, the labeled antibodies were purified using a standard spin column protocol and the protein concentration determined using a standard colorimetric protein assay. The absorbance of the α -SNAP-25 polyclonal antibody/HRP conjugate was measured at 455 nm using a spectrophotometer to determine the concentration in moles per liter. The α -SNAP-25 detection antibody solution was stored at 4° C. until needed.

To prepare the solid phase support comprising the α-SNAP-25 capture antibody that is specific for the SNAP-25 cleaved product, approximately 100 μL of α-SNAP-25 monoclonal antibody 2E2A6 solution (1 mg/mL in 1×PBS) was added to each well of a 96-well Greiner white plate and the plates were incubated at 4° C. overnight, and then any excess antibody solution was discarded. The capture anti-body-bound wells were then blocked by adding 150 μl of Blocking Buffer comprising 2% Amersham Blocking Reagent (GE Life Sciences, Piscataway, N.J.) and 10% goat serum (VWR, West Chester, Pa.) at room temperature for 1 hour. The blocking buffer was discarded and the plates were blotted dry on paper towels by inverting and tapping. The capture antibody-bound wells were then blocked and used directly to detect BoNT/A activity.

To detect the presence of a cleaved SNAP-25 product by CL sandwich ELISA analysis, 50 µL of a lysate from cells treated with BoNT/A was added to each well, the plate was sealed, and the sealed plate was incubated on a shaker rotating at 500 rpm at 4° C. for 2-4 hours to overnight. Plate wells were washed three times by aspirating the cell lysate and rinsing each well three times with 200 µl 1×PBS, 0.05% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). After washing, 100 μL of 1 mg/mL α-SNAP-25 polyclonal antibody/HRP detection antibody solution comprising 2% Amersham Blocking Reagent in 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate) was added to each well, the plate was sealed, and the sealed plate was incubated on a shaker rotating at 650 rpm at room temperature for 1 hour. After detection antibody incubation, the wells were washed three times with 200 μl 1×PBS, 0.05% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). After washing 100 µl of SuperSignal ELISA Pico 1:1 mixture (Pierce Biotechnology, Inc., Rockford, Ill.) was added to each well and the plates were read using a luminometer (Molecular

Devices, Sunnyvale, Calif.) at 395 nm. The collected data was analyzed and the EC $_{50}$ calculated as described in Example V. These results indicated that on average 1.0 pM of BoNT/A at the EC $_{50}$ was detected (a range of about 0.3 pM to about 2.0 pM) with a signal-to-noise ratio for the lower asymptote of about 15:1 to about 20:1 and a signal-to-noise ratio for the upper asymptote of about 20:1 to about 500:1.

Example VIII

Immuno-Based Method of Detecting BoNT/A Activity Using Multiplex ECL Sandwich ELISA

The following example illustrates multiplex immunobased methods of detecting BoNT/A activity by detecting a SNAP-25 cleavage product using a $\alpha\text{-SNAP-25}$ monoclonal antibody specific for a SNAP-25 cleavage product and a second antibody pair for a different protein.

1. Preparation and Identification of Capture Antibody-Detection Antibody Pair for a Second Protein.

To obtain an untreated cell lysate for analysis, a suitable density of cells from a stock culture of SiMa cells were seeded into a T175 flask containing 40 mL of a growth medium containing 1×RPMI 1640, 10% FBS, 0.1 mM Non-Essential Amino Acids, 10 mM HEPES, 1 mM sodium pyruvate, and 100 U/100 pg of penicillin-streptomycin. These cells were incubated in a 37° C. incubator under 5% carbon dioxide until the cells were approximately 70-90% confluent. The cells were washed and harvested by lysing in freshly prepared Triton X-100 Lysis Buffer (20 mM Tris pH 7.5, 150 mM sodium chloride, 0.001M EDTA, 1 mM EGTA, and 1% Triton-X-100) at 4° C. for approximately 30 minutes with constant agitation. Lysed cells were centrifuged at approximately 3300-3330×g for 40 minutes at 8° C. to eliminate debris using a bench-top centrifuge.

To identify an appropriate capture antibody-detection antibody pair for a second protein, an ECL sandwich ELISA 40 analysis was conducted on 21 different combinations of capture and detection antibody pairs comprising of five different proteins (Table 13). The antibodies used were α -Syntaxin 1A-HPC mouse monoclonal antibody S0664 (Sigma, St. Louis, Mo.), α-GAPDH mouse monoclonal antibody 45 MAB374 (Chemicon, Temecula, Calif.), α-Syntaxin 1 rabbit polyclonal antibody S1172-1 (Sigma, St. Louis, Mo.), α-GAPDH rabbit polyclonal antibody 2275-PC-1 (R & D Systems, Minneapolis, Minn.), α -Syntaxin 2 rabbit polyclonal antibody S5687 (Sigma, St. Louis, Mo.), α-human syntaxin 2 mouse monoclonal antibody MAB2936 (R & D Systems, Minneapolis, Minn.), α-mouse syntaxin 2 goat polyclonal antibody AF2568 (Sigma, St. Louis, Mo.), α-Syntaxin 2 rabbit polyclonal antibody AB5596 (Sigma, St. Louis, 55 Mo.), α-Syntaxin 1 rabbit polyclonal antibody S1172-2 (Sigma, St. Louis, Mo.), a-h, m, r actin sheep polyclonal antibody AF4000 (R & D Systems, Minneapolis, Minn.), α-beta actin mouse monoclonal antibody A1978 (Sigma, St. Louis, Mo.), α-beta mouse polyclonal antibody actin A2228 (Sigma, St. Louis, Mo.), mouse α-GAPDH mouse monoclonal antibody G8795 (Sigma, St. Louis, Mo.), α-GAPDH rabbit polyclonal antibody G9595 (Sigma, St. Louis, Mo.).

To prepare the second protein capture antibody solution, 65 the monoclonal antibodies were purchased as purified antibodies. To prepare the second protein detection antibody

88

solution, the appropriate antibody was conjugated to Ruthenium(II)-tris-bipyridine-(4-methylsulfonate) NHS labeling reagent (Meso Scale Discovery, Gaithersburg, Md.) according to the manufacturer's instructions (Meso Scale Discovery, Gaithersburg, Md.). The conjugation reaction was performed by adding 30 µL of distilled water reconstituted MSD SULFO-TAGTM stock solution to 200 μL of 2 mg/mL polyclonal antibodies and incubating the reaction at room temperature for 2 hours in the dark. The labeled antibodies were purified using a standard spin column protocol and the protein concentration determined using a standard colorimetric protein assay. The absorbance of the antibody/MSD SULFO-TAG™ conjugate was measured at 455 nm using a spectrophotometer to determine the concentration in moles per liter. The detection antibody solution was stored at 4° C. until needed.

To prepare the solid phase support comprising the capture antibody that is specific for a SNAP-25 cleaved product, approximately 5 μL of $\alpha\textsc{-SNAP-25}$ monoclonal antibody 2E2A6 solution (20 $\mu g/mL$ in 1×PBS) was added to each well of a 96-well MSD High Bind plate and the solution is allowed to air dry in a biological safety cabinet for 2-3 hours in order to liquid evaporate the solution, and then the plates were sealed and stored at 4° C. until needed. The dried capture antibody-bound wells were then blocked by adding 150 μL of Blocking Buffer comprising of 3% BSA (Pierce, Rockford, Ill.) 10% goat serum (Rockland Immunochemicals, Gilbertsville, Pa.), and Difco 1% skim milk (BD BioSciences Franklin Lakes, N.J.) in 0.05% Tween-20 PBS at room temperature for 1-2 hours.

To detect the presence of protein by ECL sandwich ELISA analysis, the Blocking Buffer from stored plates was aspirated from the wells, 25 μ L of a lysate from cells treated with BoNT/A, as described above, was added to each well and the plates were incubated at 4° C. for overnight. Plate wells were washed three times by aspirating the cell lysate and rinsing each well three times with 200 µL 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). After washing, 25 μL of 5 μg/mL the appropriate second protein detection antibody solution, resuspended in the blocking buffer as described above, was added to each well, the plate was sealed, and the sealed plate was incubated at room temperature for about 1 hour with shaking. After detection antibody incubation, the wells were washed three times with 250 μL 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). After washing 150 μL of 1× Read Buffer (Meso Scale Discovery, Gaithersburg, Md.) was added to each well and the plates were read using a SECTORTTM Imager 6000 Image Reader (Meso Scale Discovery, Gaithersburg, Md.). A ratio was calculated by dividing the signal obtained from the untreated cell lysates for each antibodypair by the signal obtained for the lysis buffer control (0 nM dose) for each antibody-pair (Table 13). These results indicated that among the twenty-one different combinations of antibody pairs tested, only two antibody pairs had signal-tonoise ratios above 10:1 for the higher dose tested: Pair No. 16 α-GAPDH mouse monoclonal antibody MAB374 and α -GAPDH rabbit polyclonal antibody RDS2275-PC-1; and Pair 21: α-GAPDH mouse monoclonal antibody MAB374 and α-GAPDH rabbit polyclonal antibody G9545. The $\alpha\text{-}GAPDH$ mouse monoclonal antibody MAB374 and α-GAPDH rabbit polyclonal antibody G9545 pair was selected as the second protein capture antibody-detection antibody pair for the multiplex ECL sandwich ELISA.

TABLE 13

Screening of Second Protein Antibody Combinations												
Antibody Pair No.		Detection Antibody	Detection of Protein	Signal/Noise Ratio (lysate/buffer)								
1	α-syntaxin 2 S5687 pAb	α-syntaxin 2 MAB2936 mAb	No	0.92								
2	α-syntaxin 2 AF2568 pAb	α-syntaxin 2 AB5596 pAb	No	1.1								
3	α-syntaxin 2 AF2568	α-syntaxin 2 S5687 pAb	No	1.11								
4	α-syntaxin 2 AF2936 pAb	α-syntaxin 2 AB5596 pAb	Yes	1.63								
5	α-syntaxin 2 AF2936 pAb	α-syntaxin 2 S5687 pAb	Yes	1.6								
6	α-syntaxin 2 AB5596 pAb	α-syntaxin 2 S5687 pAb	No	0.82								
7	α-syntaxin 2 AB5596 pAb	α-syntaxin 2 MAB2936 mAb	No	0.87								
8	α-syntaxin 2 MAB2936 mA	bα-syntaxin 2 AB5596 pAb	Yes	1.2								
9	α-syntaxin 2 MAB2936 mAl	bα-syntaxin 2 S5687 pAb	No	1.07								
10	α-syntaxin S0664 mAb	α-syntaxin 1 S1172-1 pAb	Yes	4.23								
11	α-syntaxin S0664 mAb	α-syntaxin 1 S1172-2 pAb	No	1.21								
12	α-syntaxin 1 S1172-1 pAb	α-syntaxin S0664 mAb	Yes	5.5								
13	α-syntaxin 1 S1172-2 pAb	α-syntaxin S0664 mAb	Yes	2.5								
14	α-h, m, r actin AF4000 pAb	α-beta actin A1978 mAb	No	1.04								
15	α-h, m, r actin AF4000 pAb	α-beta actin A2228 mAb	No	1.08								
16	α-GAPDH MAB374 mAb	α-GAPDH 2275-PC-1 pAb	Yes	20.04								
17	α-GAPDH MAB374 mAb	α-GAPDH G8795 mAb	No	0.89								
18	α-GAPDH 2275-PC-1 pAb	α-GAPDH MAB374 mAb	No	1.08								
19	α-GAPDH 2275-PC-1 pAb	α-GAPDH G8795 mAb	Yes	1.27								
20	α-GAPDH G8795 mAb	α-GAPDH 2275-PC-1 pAb	Yes	2.74								
21	α -GAPDH MAB374 mAb	α-GAPDH G9545 pAb	Yes	≥100								

2. Immuno-Based Method of Detecting BoNT/A Activity Using Multiplex ECL Sandwich ELISA.

To obtain a BoNT/A treated cell lysate for analysis, a suitable density of cells from a stock culture of a SiMa cell line were seeded into a poly-D-lysine 96-well plate containing a serum-free medium containing Minimum Essential Medium, 2 mM GlutaMAXTTM I with Earle's salts, 1×B27 supplement, 1×N2 supplement, 0.1 mM Non-Essential Amino Acids, 10 mM HEPES. These cells were incubated in 35 a 37° C. incubator under 5% carbon dioxide until the cells differentiated, as assessed by standard and routine morphological criteria, such as growth arrest and neurite extension (approximately 3 days). The media was aspirated from each 40 well and replaced with fresh media containing either 0 (untreated sample), 0.67 U/mL, 2.35 U/mL, 8.23 U/mL, 28.82 U/mL, 101 U/mL, 353 U/mL of a BoNT/A complex. After a 24 hr treatment, the cells were washed, incubated for an additional two days without toxin. The cells were washed, 45 harvested, and processed as described above in Section 1.

The α -SNAP-25 capture antibody solution and the α -SNAP-25 detection antibody solution, were prepared as described in Example VII. To prepare the α -GAPDH capture antibody solution, the α -GAPDH monoclonal antibody mouse MAB374 (Chemicon, Temecula, Calif.) was prepared as described in Section 1 above. To prepare the α -GAPDH detection antibody solution, α -GAPDH rabbit polyclonal antibody G9545 (Sigma, St. Louis, Mo.) was conjugated to Ruthenium(II)-tris-bipyridine-(4-methylsulfonate) NHS ester labeling reagent (Meso Scale Discovery, Gaithersburg, Md.) according to the manufacturer's instructions (Meso Scale Discovery, Gaithersburg, Md.). The conjugation reaction, purification of labeled α -SNAP-25 antibody, concentration determination and storage were as described in Section 1 above.

To prepare the solid phase support comprising the α -SNAP-25 capture antibody and the α -GAPDH capture antibody, approximately 2.5 mL of the α -SNAP-25 capture $_{65}$ antibody solution (45 µg/mL in 1×PBS) and 2.5 mL of the α -GAPDH capture antibody solution (120 µg/mL in 1×PBS)

were added to each well of a 96-well MSD High Bind plate in a muliplex format using a robotic system. The solution is allowed to air dry in a biological safety cabinet for at least 2-3 hours in order to liquid evaporate the solution. The capture antibody-bound wells were then blocked and used directly to detect BoNT/A Activity and the GAPDH protein.

To detect the presence of SNAP-25 cleavage product by multiplex ECL sandwich ELISA analysis, the Blocking Buffer from stored plates was aspirated from the wells, 25 µL of a lysate from cells treated with BoNT/A, as described above, was added to each well and the plates were incubated at 4° C. for overnight. Plate wells were washed three times by aspirating the cell lysate and rinsing each well three times with 200 μL 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). After washing, 25 μL of 5 μg/mL the α -SNAP-25 detection antibody solution and 25 μ L of 5 μg/mL the α-GAPDH detection antibody solution, as described above, was added to each well, the plate was sealed, and the sealed plate was incubated at room temperature for about 1 hour with shaking. After detection antibody incubation, the wells were washed three times with 250 μ L 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). After washing 150 μL of 1× Read Buffer (Meso Scale Discovery, Gaithersburg, Md.) was added to each well and the plates were read using a SECTOR™ Imager 6000 Image Reader (Meso Scale Discovery, Gaithersburg, Md.). The collected data was analyzed and the relative potency from the normalized data is calculated as described in Example V. except that PLA 2.0 software (Stegmann Systems, GmbH, Germany) was used.

As a comparison, the detection of SNAP-25 cleavage product was also performed using the singleplex ECL sandwich ELISA as described in Example VI.

The results indicated that the SNAP-25 data obtained from the singleplex ECL sandwich ELISA, or from the non-normalized SNAP-25 data obtained from the multiplex ECL sandwich ELISA, revealed one outlier sample dose that did not fit into the dose-response curve. However, normalization of the SNAP-25 data against the GAPDH data gave a better curve fit and the potency was closer to the expected value.

Example IX

Immuno-Based Method of Detecting BoNT/A Activity Using Multiplex EC Sandwich ELISA

The following example illustrates multiplex immuno-based methods of detecting BoNT/A activity by detecting a SNAP-25 cleavage product using a α -SNAP-25 monoclonal antibody specific for a SNAP-25 cleavage product and a second antibody pair for a different protein.

The lysate from cells treated with a BoNT/A was prepared as described in Example VI. The α -SNAP-25 capture antibody solution, the α -SNAP-25 detection antibody solution, and the α -SNAP-25 solid phase support were prepared as described in Example VII.

To prepare α -GAPDH capture antibody solution, α -GAPDH monoclonal antibody MAB374 (Millipore, Billerica, Mass.) was purchased as a purified antibody. To prepare the α -GAPDH detection antibody solution, an α -GAPDH polyclonal antibody G9545 (Sigma, St. Louis, 20 Mo.) was conjugated to Horseradish peroxidase (HRP) according to the manufacturer's instructions (Pierce Biotechnology, Inc., Rockford, Ill.). The conjugation reaction, concentration determination and storage were as described in Example VII.

To prepare the solid phase support comprising a second capture antibody specific for the second protein, approximately $100\,\mu\text{L}$ of monoclonal antibody solution comprising 1 $\mu\text{g/mL}$ $\alpha\text{-GAPDH}$ monoclonal antibody MAB374 was added to each well of a 96-well Greiner white plate and the plates 30 were incubated at 4° C. overnight, and then any excess antibody solution was discarded. The $\alpha\text{-GAPDH}$ capture antibody-bound wells were then blocked by adding 150 μ l of Blocking Buffer comprising 2% Amersham Blocking Reagent (GE Life Sciences, Piscataway, N.J.) and 10% goat 35 serum (VWR, West Chester, Pa.) at room temperature for 1 hour. The blocking buffer was discarded and the plates were blotted dry on paper towels by inverting and tapping. The capture antibody-bound wells were then blocked and used directly to detect BoNT/A activity.

To detect the presence of a cleaved SNAP-25 product by multiplex CL sandwich ELISA analysis, 50 μL of cell lysates from cells treated with BoNT/A was added to each well of the α-SNAP-25 capture antibody solid phase support and the α-GAPDH capture antibody solid phase support, the plate 45 was sealed, and the sealed plate was incubated on a shaker rotating at 500 rpm at 4° C. for 2-4 hours to overnight. Plate wells were washed three times by aspirating the cell lysate and rinsing each well three times with 200 µl 1×PBS, 0.05% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). 50 After washing, 100 µL of a detection antibody solution comprising 2% Amersham Blocking Reagent in 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate), and 1 mg/mL α-SNAP-25 polyclonal antibody/HRP was added to each well of the α -SNAP-25 capture antibody solid 55 phase support, the plate was sealed, and the sealed plate was incubated on a shaker rotating at 650 rpm at room temperature for 1 hour. Similarly, 100 μL of a detection antibody solution comprising 2% Amersham Blocking Reagent in 1xPBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan mono- 60 laureate), and 0.25 mg/mL α-GAPDH G9545 polyclonal antibody/HRP (Sigma Co., St Louis, Mo.) was added to each well of the α -GAPDH capture antibody solid phase support, the plate was sealed, and the sealed plate was placed on a shaker rotating at 650 rpm at room temperature for 1 hour. 65 After detection antibody incubation, the wells were washed three times with 200 µl 1×PBS, 0.05% TWEEN-20® (poly92

oxyethylene (20) sorbitan monolaurate). After washing 100 μl of SuperSignal ELISA Pico 1:1 mixture (Pierce Biotechnology, Inc., Rockford, Ill.) was added to each well and the plates were read using a luminometer (Molecular Devices, Sunnyvale, Calif.) at 395 nm. The collected data was analyzed and the EC₅₀ calculated as described in Example V. The results indicated that the data points collected for the amounts of α-SNAP-25 antibody-antigen complex detected were a better fit after normalization to the amounts of α-GAPDH antibody-antigen complex detected, thereby producing a more accurate reading. These results indicated that on average 1.0 pM of BoNT/A at the EC₅₀ was detected (a range of about 0.3 pM to about 2.0 pM) with a signal-to-noise ratio for the lower asymptote of about 15:1 to about 20:1 and a signalto-noise ratio for the upper asymptote of about 20:1 to about 500:1.

A similar design can be used for multiplex immuno-based methods of detecting BoNT/A activity by detecting a SNAP-25 cleavage product using a $\alpha\text{-SNAP-25}$ monoclonal antibody specific for a SNAP-25 cleavage product having a carboxyl-terminus at the P_1 residue of the BoNT/A cleavage site scissile bond using ECL sandwich ELISA with the same $\alpha\text{-GAPDH}$ antibody pair.

Example X

Immuno-Based Method to Detect Picomolar Amounts of BoNT/A

To evaluate binding specificity of an α-SNAP-25 polyclonal antibody that can selectively bind to a SNAP-25 antigen having a carboxyl-terminus at the P₁ residue of the BoNT/A cleavage site scissile bond, purified NTP 22 and NTP 23 α-SNAP-25 polyclonal antibodies were used to detect cleavage product using the cell-based activity assay, immunocytochemistry and immunoprecipitation described in Example III. The cell-based cleavage assay, immunocytochemistry analysis and immunoprecipitation analysis all indicated that NTP 22 and NTP 23 α -SNAP-25 polyclonal antibodies did not cross-react with uncleaved SNAP-25. Thus both NTP 22 and NTP 23 have high binding specificity for the SNAP-25₁₉₇ cleavage product relative to the SNAP-25₂₀₆ uncleaved substrate. Affinity for the antigens can be determined using SPR in the BIAcore® as described in Example Ill.

1. Immuno-based Method of Detecting BoNT/A Using ECL Sandwich ELISA.

To prepare a lysate from cells treated with a BoNT/A, approximately 50,000 to 150,000 cells from an established cell line were plated into the wells of 96-well tissue culture poly-D-lysine plates containing 100 μL of a serum-free medium containing Minimum Essential Medium, 2 mM GlutaMAXTTM I with Earle's salts, 1×B27 supplement, 1×N2 supplement, 0.1 mM Non-Essential Amino Acids, 10 mM HEPES and 25 μg/mL GT1b (see Examples I and II). These cells were incubated in a 37° C. incubator under 5% carbon dioxide until the cells differentiated, as assessed by standard and routine morphological criteria, such as growth arrest and neurite extension (approximately 2 to 3 days). The media from the differentiated cells was aspirated from each well and replaced with fresh media containing either 0 (untreated sample), 0.03 pM, 0.1 pM, 0.3 pM, 0.9 pM, 2.8 pM, 8.3 pM, or 25 pM of a BoNT/A pharmaceutical product reconstituted in a sodium chloride free solution; or 0 (un-

treated sample), 0.7 U/mL, 2.1 U/mL, 6.2 U/mL, 18.5 U/mL, 55.6 U/mL, 166.7 U/mL or 500 U/mL of a BoNT/A pharmaceutical product reconstituted in a sodium chloride free medium. Because the BoNT/A pharmaceutical product contains sodium chloride, its addition to the culture medium 5 resulted in a hypertonic media that was detrimental to cell viability. To circumvent the hypertonicity issue, 200 μL of MEM media made without sodium chloride was used to reconstitute the BoNT/A pharmaceutical product giving a final concentration of 25 pM BoNT/A (500 U/mL). The 10 matrix was kept constant for all concentrations along the dose-response curve by adding sodium chloride in the media used to make the dilutions match the amount of excipients present at the highest concentration used (25 pM or 500 U/mL). After a 24 hr treatment, the cells were washed, and 15 incubated for an additional two days without toxin. To harvest the cells, the medium was aspirated, washed with 1×PBS, and lysed by adding 30 µl of Lysis Buffer comprising 50 mM HEPES, 150 mM NaCl, 1.5 mM MgCl₂, 1 mM EGTA, 1% Triton X-100 to each well, and the plate incubated on a shaker 20 rotating at 500 rpm for 30 minutes at 4° C. The plate was centrifuged at 4000 rpm for 20 minutes at 4° C. to pellet cellular debris and the supernatant was transferred to a capture antibody coated 96-well plate to perform the detection

The α -SNAP-25 capture antibody solution, the α -SNAP-25 detection antibody solution, and the solid phase support comprising the capture antibody that is specific for a SNAP-25 cleaved product were prepared as described in Example VI

To detect the presence of a cleaved SNAP-25 product by ECL sandwich ELISA analysis, the Blocking Buffer from stored plates was aspirated, 25 μL of a lysate from cells treated with BoNT/A was added to each well and the plates were incubated at 4° C. for either 2 hrs or 24 hrs. Plate wells 35 were washed three times by aspirating the cell lysate and rinsing each well three times with 200 µL 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). After washing, 25 μl of 5 μg/mL α-SNAP-25 detection antibody solution comprising 2% Amersham Blocking Reagent 40 in 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate) was added to each well, the plate was sealed, and the sealed plate was incubated at room temperature for 1 hour with shaking. After α -SNAP-25 detection antibody incubation, the wells were washed three times with 45 200 μ L 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). After washing, the plates were processed, collected data was analyzed, and the EC_{50} calculated as described in Example V. These results indicated that on average 1.0 pM of BoNT/A at the EC $_{50}$ was detected (a range $\,$ 50 $\,$ of about 0.3 pM to about 2.0 pM) with a signal-to-noise ratio for the lower asymptote of about 15:1 to about 20:1 and a signal-to-noise ratio for the upper asymptote of about 20:1 to about 500:1 (FIG. 9). This method can also be performed in a multiplex fashion as described in Example VIII.

2. Immuno-Based Method of Detecting BoNT/A Using CL Sandwich ELISA.

Lysate from cells treated with a BoNT/A and the α -SNAP-25 capture antibody solution will be prepared as described in Example VI. The α -SNAP-25 detection antibody solution 60 and solid phase support comprising the capture antibody that is specific for a SNAP-25 cleaved product will be prepared as described in Example VII.

To detect the presence of a cleaved SNAP-25 product by CL sandwich ELISA analysis, 25 μ L of a lysate from cells 65 treated with BoNT/A will be added to each well, the plate was sealed, and the sealed plate was incubated on a shaker rotating

94

at 500 rpm at 4° C. for either 2 hrs or 24 hrs. Plate wells will be washed three times by aspirating the cell lysate and rinsing each well three times with 200 µl 1×PBS, 0.05% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). After washing, 100 μL of 1 mg/mL α-SNAP-25 polyclonal antibody/HRP detection antibody solution comprising 2% Amersham Blocking Reagent in 1×PBS, 0.1% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate) will be added to each well, the plate was sealed, and the sealed plate was incubated on a shaker rotating at 650 rpm at room temperature for 1 hour. After detection antibody incubation, the wells will be washed three times with 200 µl 1×PBS, 0.05% TWEEN-20® (polyoxyethylene (20) sorbitan monolaurate). After washing 100 µl of SuperSignal ELISA Pico 1:1 mixture (Pierce Biotechnology, Inc., Rockford, Ill.) will be added to each well and the plates will be read using a luminometer (Molecular Devices, Sunnyvale, Calif.) at 395 nm. The collected data will be analyzed and the EC_{50} will be calculated as described in Example V. This method can also be performed in a multiplex fashion as described in Example VIII.

Example XI

Immuno-Based Method to Detect Neutralizing α-BoNT/A Antibodies

The following example illustrates how to perform an immuno-based method that can detect the presence of neutralizing α -BoNT/A antibodies.

BoNT/A, is currently used for a wide range of medical indications including muscle hyperactivity, ophthalmologic, gastrointestinal, urologic, and cosmetic. With repeated longterm treatment of BoNT/A, a patient may develop neutralizing α -BoNT/A antibodies to the toxin leading to immunoresistance. Neutralizing α -BoNT/A antibodies inhibit BoNT/A activity by stopping the toxin's uptake into neuronal cells by binding to the binding domain (H_C) and/or the translocation domain (H_N) of BoNT/A. Some studies have suggested that up to 5-10% of patients repeatedly treated for dystonia with formulations of BoNT/A have immunoresistance due to the development of neutralizing α-BoNT/A antibodies. The established assay to determine the presence of the neutralizing α -BoNT/A antibodies in patient's blood is the mouse protection assay (MPA). Currently, BoNT/A is incubated with a patient's serum prior to injection into mice. The presence of antibodies is manifested by a decreased response to the neurotoxin in the animal. Since the MPA is an in vivo based assay, it would be more cost and time efficient if it was replaced with a cell-based assay.

To detect the presence or absence of neutralizing α -BoNT/A antibodies, the immuno-based methods of determining BoNT/A activity disclosed in the present specification can be used. One way is to determine the amount of SNAP-25 cleavage product present after treatment with various concentrations of BoNT/A using a Western blot detection method, the other way was to use an ECL sandwich ELISA detection method.

To prepare a sample comprising neutralizing α -BoNT/A antibodies and a negative control sample known to lack α -BoNT/A neutralizing antibodies, serum was isolated from blood of different individuals. Individuals declining immunizations were referred to as naïve individuals. Individuals accepting immunization were referred to as immunized individuals. The blood was drawn into a serum tube with a clot

activator (BD Biosciences, Bedford, Mass.). Serum was obtained by centrifugation of the blood at 1000xg for 10 minutes at 4° C. The serum of two donors was obtained: one individual was immunized to BoNT/A while the other was

To prepare a lysate from cells treated with a sample comprising BoNT/A, SiMa cells were seeded in a poly-D-lysine 96-well plate and differentiated as described in Example VI. The human serums were serially diluted 1:100-1:152,000 by 2.5 fold increments using serum-free media. The BoNT/A was suspended in 0.5 mL SiMa culture media at a concentration of 10 pM. The media containing BoNT/A and α-BoNT/A antibodies were mixed and incubated for 15 min or 1 hr at room temperature. The cells were treated with BoNT/A with human serum for 2 hr followed by a 15 hr incubation in fresh growth media. The cells were also treated for 15 hr with no additional incubation time.

To detect the presence of a cleaved SNAP-25 product by Western blot analysis, the media was aspirated from each 20 well, the cells suspended in 50 μL of SDS-PAGE loading buffer, and then heated to 95° C. for 5 minutes. An aliquot from each harvested sample was analyzed by Western blot as described in Example I, except that harvested samples are separated by SDS-PAGE using 12% 26-well Criterion gels 25 (Bio-Rad Laboratories, Hercules, Calif.), and the rabbit polyclonal α -SNAP-25₁₉₇ antibody serum was used as the primary antibody (see Example IV). The results indicate that test samples resulted in reduced cleavage of SNAP-25 when compared to the negative control sample, demonstrating that the serum from the immunized individual contained neutralizing α -BoNT/A antibodies.

To detect the presence of a cleaved SNAP-25 product by ECL Sandwich ELISA, the media was removed from each well and the cells were lysed as described in Example V. The α -SNAP-25 capture antibody solution, the α -SNAP-25 detection antibody solution, and the α -SNAP-25 solid phase support were prepared as described in Example VII. Superport and an ECL sandwich ELISA assay was performed as detailed in Example V. The collected data was analyzed and the EC₅₀ calculated as described in Example V, except that the EC_{50} is the serum dilution needed to inhibit the activity of the BoNT/A to ½ its maximum and the ratio of maximal signal 45 $(Signal_{Max})$ to minimum signal $(Signal_{Min})$ was obtained by dividing the SNAP-25 cleavage product signal obtained with the highest dilution of serum by the signal obtained with the lowest serum dilution.

The results indicate that the presence of neutralizing 50 α -BoNT/A in human serum could be detected. The activity of the BoNT/A complex incubated in serum from the immunized individual decreased as the serum dilution decreased, whereas, the presence of naïve serum had no impact on the assay at every dilution tested. This assay can be performed using a formulated BoNT/A pharmaceutical product, a bulk BoNT/A complex, or a purified neurotoxin.

Example XII

Immuno-Based Method to Detect BoNT/A Activity Using Engineered Cells

The following example illustrates how to introduce a polynucleotide molecule encoding a BoNT/A receptor into cells 96

from an established cell line to further improve susceptibility to BoNT/A intoxication or improve BoNT/A uptake capacity.

To introduce an exogenous BoNT/A receptor into cells comprising an established cell line, an expression construct comprising a polynucleotide molecule of SEQ ID NO: 130 encoding the FGFR2 of SEQ ID NO: 59, or a polynucleotide molecule of SEQ ID NO: 139 encoding the FGFR3 of SEQ ID NO: 25, was transfected into cells from an established cell line by a cationic lipid method. A suitable density (about 5×10^6 cells) of cells from an established cell line are plated in a 100 mm tissue culture dish containing 5 mL of complete culture media and grown in a 37° C. incubator under 5% carbon dioxide until the cells reached a density appropriate for transfection. A 3 mL transfection solution is prepared by adding 1.5 mL of OPTI-MEM Reduced Serum Medium containing 60 µL of LipofectAmine 2000 (Invitrogen, Carlsbad, Calif.) incubated at room temperature for 5 minutes to 1.5 mL of OPTI-MEM Reduced Serum Medium containing 24 µg of an expression construct encoding a FGFR2 or a FGFR3, or a control expression construct encoding a green fluorescent protein (GFP). This transfection mixture was incubated at room temperature for approximately 30 minutes. The complete media is replaced with the 3 mL transfection solution and the cells are incubated in a 37° C. incubator under 5% carbon dioxide for approximately 8 hours. Transfection media is replaced with 3 mL of fresh complete culture media and the cells are incubated in a 37° C. incubator under 5% carbon dioxide for approximately 24 hours. Media is replaced with 3 mL of fresh complete culture media containing approximately 1 mM G418 (Invitrogen, Carlsbad, Calif.). Cells are incubated in a 37° C. incubator under 5% carbon dioxide for approximately 1 week, the old media is replaced with fresh complete culture media containing 0.5 mM G418. Once antibiotic-resistant colonies are established, resistant clones are replated to new 100 mm culture plates containing fresh complete culture media, supplemented with approximately 0.5 mM G418 until these cells reached a density of 6 to 20×10^5 cells/mL.

To determine if the overexpression of BoNT/A receptors natants were transferred to the α -SNAP-25 solid phase sup- $_{40}$ improved cell susceptibility to BoNT/A intoxication or improved BoNT/A uptake capacity, a dose-response curve was generated using cells treated with different doses of a BoNT/A complex. To prepare a lysate from cells treated with a BoNT/A, a suitable density of cells from an established transfected cell line was plated into the wells of 96-well tissue culture plates containing 100 µL of an appropriate serum-free medium (Table 5). These cells were incubated in a 37° C. incubator under 5% carbon dioxide until the cells differentiated, as assessed by standard and routine morphological criteria, such as growth arrest and neurite extension (approximately 3 days). The media from the differentiated cells was aspirated from each well and replaced with fresh media containing either 0 (untreated sample), 0.01 nM, 0.04 nM, 0.12 nM, 0.37 nM, 1.1 nM, 3.3 nM, and 10 nM of a BoNT/A complex for cells comprising a SiMa or a PC12 transfected cell line; and 0 (untreated sample), 0.14 nM, 0.40 nM, 1.2 nM, 3.7 nM, 11 nM, 33 nM, and 100 nM of a BoNT/A complex for cells comprising a Neuro-2a transfected cell line. The cells were treated with BoNT/A containing media for 6 hrs fol-60 lowed by incubation with fresh media for 15 hrs and harvested by adding 40 μL of 2×SDS-PAGE loading buffer and heating the plate to 95° C. for 5 min.

To detect for the presence of SNAP-25 cleavage product, an aliquot from each harvested sample was analyzed by Western blot as described in Example I, except that harvested samples are separated by SDS-PAGE using 12% 26-well Criterion gels (Bio-Rad Laboratories, Hercules, Calif.), and

98 TABLE 14

the following primary antibodies were used a 1:1,000 dilution of rabbit polyclonal $\alpha\text{-SNAP-25}$ antibody serum (Example IV) (AGN, polyclonal antibody), a 1:500 dilution of $\alpha\text{-FGFR2}$ rabbit polyclonal C-17 (Santa Cruz Biotechnology, Santa Cruz, Calif.), or a 1:500 dilution of $\alpha\text{-FGFR3}$ rabbit 5 polyclonal C-15 (Santa Cruz Biotechnology, Santa Cruz, Calif.). The intensity of the protein of interest from each sample was calculated using Image Quant (GE Healthcare, Piscataway, N.J.) and the EC $_{50}$ for each of the cells lines was estimated using SigmaPlot software.

The results indicate that cells transfected with FGFR2 or FGFR3 were more sensitive to BoNT/A than cells transfected with GFP and also showed a higher level of SNAP-25 cleavage (Table 14). The $\rm EC_{50}$ values for cells over-expressing FGFR2 or FGFR3 were lower than the $\rm EC_{50}$ values exhibited 15 by cells over-expressing GFP, indicating that introduction of FGFR2 or FGFR3 improved cell susceptibility to BoNT/A intoxication or improved BoNT/A uptake capacity.

Effects of Introducing Exogenous BoNT/A Receptors on Cell Susceptibilty to BoNT/A Intoxication or BoNT/A Uptake

	Cells	Transfected Gene	$EC_{50}\left(nM\right)$	Max Signal
)	SiMa	GFP	0.0812 ± 0.010	22,733,787
	SiMa	FGFR2	0.0459 ± 0.003	26,136,578
	SiMa	FGFR3	0.0377 ± 0.006	24,326,271
	PC-12	GFP	3.3362 ± 1.881	26,956,063
	PC-12	FGFR2	0.3429 ± 0.059	25,376,114
	PC-12	FGFR3	0.2634 ± 0.026	24,102,459
	Neuro-2a	GFP	61.80 ± 9.710	4,605,974
	Neuro-2a	FGFR2	31.59 ± 8.800	23,279,765
	Neuro-2a	FGFR3	11.55 ± 5.240	28,347,413

Detection for the presence of SNAP-25 cleavage product can also be performed using sandwich ELISA as described in Examples VI-X.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 148 <210> SEQ ID NO 1 <211> LENGTH: 1296 <212> TYPE: PRT <213> ORGANISM: Clostridium botulinum <400> SEQUENCE: 1 Met Pro Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly 1 5 10 15 Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met Gln Pro $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$ Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg \$35\$ \$40\$ \$45\$Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr 65 70 75 80 Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys 120 Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly Ser Tyr 135 Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp Ile Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn Leu Thr Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro Asp Phe Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro Leu Leu Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala His Glu Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn Pro Asn

Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu

_															
				245					250					255	
Glu	Val	Ser	Phe 260	Glu	Glu	Leu	Arg	Thr 265	Phe	Gly	Gly	His	Asp 270	Ala	Lys
Phe	Ile	Asp 275	Ser	Leu	Gln	Glu	Asn 280	Glu	Phe	Arg	Leu	Tyr 285	Tyr	Tyr	Asn
Lys	Phe 290	Lys	Asp	Ile	Ala	Ser 295	Thr	Leu	Asn	Lys	Ala 300	ГЛа	Ser	Ile	Val
Gly 305	Thr	Thr	Ala	Ser	Leu 310	Gln	Tyr	Met	Lys	Asn 315	Val	Phe	Lys	Glu	Lys 320
Tyr	Leu	Leu	Ser	Glu 325	Asp	Thr	Ser	Gly	Lys 330	Phe	Ser	Val	Asp	Lys 335	Leu
Lys	Phe	Asp	Lys 340	Leu	Tyr	Lys	Met	Leu 345	Thr	Glu	Ile	Tyr	Thr 350	Glu	Asp
Asn	Phe	Val 355	Lys	Phe	Phe	Lys	Val 360	Leu	Asn	Arg	Lys	Thr 365	Tyr	Leu	Asn
Phe	Asp 370	Lys	Ala	Val	Phe	Lys 375	Ile	Asn	Ile	Val	Pro 380	Lys	Val	Asn	Tyr
Thr 385	Ile	Tyr	Asp	Gly	Phe 390	Asn	Leu	Arg	Asn	Thr 395	Asn	Leu	Ala	Ala	Asn 400
Phe	Asn	Gly	Gln	Asn 405	Thr	Glu	Ile	Asn	Asn 410	Met	Asn	Phe	Thr	Lys 415	Leu
Lys	Asn	Phe	Thr 420	Gly	Leu	Phe	Glu	Phe 425	Tyr	Lys	Leu	Leu	Cys 430	Val	Arg
Gly	Ile	Ile 435	Thr	Ser	ГÀа	Thr	Lys 440	Ser	Leu	Asp	ГÀа	Gly 445	Tyr	Asn	Lys
Ala	Leu 450	Asn	Asp	Leu	CAa	Ile 455	Lys	Val	Asn	Asn	Trp 460	Asp	Leu	Phe	Phe
Ser 465	Pro	Ser	Glu	Asp	Asn 470	Phe	Thr	Asn	Asp	Leu 475	Asn	ГÀа	Gly	Glu	Glu 480
Ile	Thr	Ser	Asp	Thr 485	Asn	Ile	Glu	Ala	Ala 490	Glu	Glu	Asn	Ile	Ser 495	Leu
Asp	Leu	Ile	Gln 500	Gln	Tyr	Tyr	Leu	Thr 505	Phe	Asn	Phe	Asp	Asn 510	Glu	Pro
Glu	Asn	Ile 515	Ser	Ile	Glu	Asn	Leu 520	Ser	Ser	Asp	Ile	Ile 525	Gly	Gln	Leu
Glu	Leu 530	Met	Pro	Asn	Ile	Glu 535	Arg	Phe	Pro	Asn	Gly 540	Lys	Lys	Tyr	Glu
Leu 545	Asp	ГЛа	Tyr	Thr	Met 550	Phe	His	Tyr	Leu	Arg 555	Ala	Gln	Glu	Phe	Glu 560
His	Gly	ГЛа	Ser	Arg 565	Ile	Ala	Leu	Thr	Asn 570	Ser	Val	Asn	Glu	Ala 575	Leu
Leu	Asn	Pro	Ser 580	Arg	Val	Tyr	Thr	Phe 585	Phe	Ser	Ser	Asp	Tyr 590	Val	Lys
Lys	Val	Asn 595	Lys	Ala	Thr	Glu	Ala 600	Ala	Met	Phe	Leu	Gly 605	Trp	Val	Glu
Gln	Leu 610	Val	Tyr	Asp	Phe	Thr 615	Asp	Glu	Thr	Ser	Glu 620	Val	Ser	Thr	Thr
Asp 625	Lys	Ile	Ala	Asp	Ile 630	Thr	Ile	Ile	Ile	Pro 635	Tyr	Ile	Gly	Pro	Ala 640
Leu	Asn	Ile	Gly	Asn 645	Met	Leu	Tyr	Lys	Asp 650	Asp	Phe	Val	Gly	Ala 655	Leu
Ile	Phe	Ser	Gly 660	Ala	Val	Ile	Leu	Leu 665	Glu	Phe	Ile	Pro	Glu 670	Ile	Ala

Ile	Pro	Val 675	Leu	Gly	Thr	Phe	Ala 680	Leu	Val	Ser	Tyr	Ile 685	Ala	Asn	ГЛа
Val	Leu 690	Thr	Val	Gln	Thr	Ile 695	Asp	Asn	Ala	Leu	Ser 700	Lys	Arg	Asn	Glu
Lys 705	Trp	Asp	Glu	Val	Tyr 710	Lys	Tyr	Ile	Val	Thr 715	Asn	Trp	Leu	Ala	Lys 720
Val	Asn	Thr	Gln	Ile 725	Asp	Leu	Ile	Arg	Lys 730	Lys	Met	Lys	Glu	Ala 735	Leu
Glu	Asn	Gln	Ala 740	Glu	Ala	Thr	Lys	Ala 745	Ile	Ile	Asn	Tyr	Gln 750	Tyr	Asn
Gln	Tyr	Thr 755	Glu	Glu	Glu	Lys	Asn 760	Asn	Ile	Asn	Phe	Asn 765	Ile	Asp	Asp
Leu	Ser 770	Ser	Lys	Leu	Asn	Glu 775	Ser	Ile	Asn	Lys	Ala 780	Met	Ile	Asn	Ile
Asn 785	Lys	Phe	Leu	Asn	Gln 790	Cys	Ser	Val	Ser	Tyr 795	Leu	Met	Asn	Ser	Met 800
Ile	Pro	Tyr	Gly	Val 805	Lys	Arg	Leu	Glu	Asp 810	Phe	Asp	Ala	Ser	Leu 815	Lys
Asp	Ala	Leu	Leu 820	ГÀа	Tyr	Ile	Tyr	Asp 825	Asn	Arg	Gly	Thr	Leu 830	Ile	Gly
Gln	Val	Asp 835	Arg	Leu	ГÀа	Aap	Lys 840	Val	Asn	Asn	Thr	Leu 845	Ser	Thr	Asp
Ile	Pro 850	Phe	Gln	Leu	Ser	Ьув 855	Tyr	Val	Asp	Asn	Gln 860	Arg	Leu	Leu	Ser
Thr 865	Phe	Thr	Glu	Tyr	Ile 870	ГÀз	Asn	Ile	Ile	Asn 875	Thr	Ser	Ile	Leu	Asn 880
Leu	Arg	Tyr	Glu	Ser 885	Asn	His	Leu	Ile	Asp 890	Leu	Ser	Arg	Tyr	Ala 895	Ser
rys	Ile	Asn	Ile 900	Gly	Ser	Lys	Val	Asn 905	Phe	Asp	Pro	Ile	Asp 910	Lys	Asn
Gln	Ile	Gln 915	Leu	Phe	Asn	Leu	Glu 920	Ser	Ser	Lys	Ile	Glu 925	Val	Ile	Leu
rys	Asn 930	Ala	Ile	Val	Tyr	Asn 935	Ser	Met	Tyr	Glu	Asn 940	Phe	Ser	Thr	Ser
Phe 945	Trp	Ile	Arg	Ile	Pro 950	Lys	Tyr	Phe	Asn	Ser 955	Ile	Ser	Leu	Asn	Asn 960
Glu	Tyr	Thr	Ile	Ile 965	Asn	CAa	Met	Glu	Asn 970	Asn	Ser	Gly	Trp	Lys 975	Val
Ser	Leu	Asn	Tyr 980	Gly	Glu	Ile	Ile	Trp 985	Thr	Leu	Gln	Aap	Thr 990	Gln	Glu
Ile	Lys	Gln 995	Arg	Val	Val	Phe	Lys 1000	_	Ser	Gln	Met	Ile 1005		Ile	Ser
Asp	Tyr 1010		Asn	Arg	Trp	Ile 1015		Val	Thr	Ile	Thr 1020		Asn	Arg	Leu
Asn 1025		Ser	Lys	Ile	Tyr 1030		Asn	Gly	Arg	Leu 1035		Asp	Gln	Lys	Pro 1040
Ile	Ser	Asn	Leu	Gly 1045		Ile	His	Ala	Ser 1050		Asn	Ile	Met	Phe 1055	_
Leu	Asp	Gly	Cys 1060	Arg	Asp	Thr	His	Arg 1065		Ile	Trp	Ile	Lys 1070		Phe
Asn	Leu	Phe 1075	_	Lys	Glu	Leu	Asn 1080		Lys	Glu	Ile	Lys 1085	_	Leu	Tyr

-continued

Asp Asn Gln Ser Asn Ser Gly Ile Leu Lys Asp Phe Trp Gly Asp Tyr 1095 1100 Leu Gln Tyr Asp Lys Pro Tyr Tyr Met Leu Asn Leu Tyr Asp Pro Asn Lys Tyr Val Asp Val Asn Asn Val Gly Ile Arg Gly Tyr Met Tyr Leu 1130 Lys Gly Pro Arg Gly Ser Val Met Thr Thr Asn Ile Tyr Leu Asn Ser Ser Leu Tyr Arg Gly Thr Lys Phe Ile Ile Lys Lys Tyr Ala Ser Gly Asn Lys Asp Asn Ile Val Arg Asn Asn Asp Arg Val Tyr Ile Asn Val Val Val Lys Asn Lys Glu Tyr Arg Leu Ala Thr Asn Ala Ser Gln Ala 1195 Gly Val Glu Lys Ile Leu Ser Ala Leu Glu Ile Pro Asp Val Gly Asn 1210 Leu Ser Gln Val Val Val Met Lys Ser Lys Asn Asp Gln Gly Ile Thr 1225 Asn Lys Cys Lys Met Asn Leu Gln Asp Asn Asn Gly Asn Asp Ile Gly 1240 Phe Ile Gly Phe His Gln Phe Asn Asn Ile Ala Lys Leu Val Ala Ser 1255 Asn Trp Tyr Asn Arg Gln Ile Glu Arg Ser Ser Arg Thr Leu Gly Cys 1270 1275 Ser Trp Glu Phe Ile Pro Val Asp Asp Gly Trp Gly Glu Arg Pro Leu 1285 1290 <210> SEO ID NO 2 <211> LENGTH: 1296 <212> TYPE: PRT <213> ORGANISM: Clostridium botulinum <400> SEOUENCE: 2 Met Pro Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly 10 Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr $\hbox{Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu Phe Glu } \\$ Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser Ile Val Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys 120 Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly Ser Tyr 135 Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp Ile 150 155 Ile Gln Phe Glu Cys Lys Ser Phe Gly His Asp Val Leu Asn Leu Thr 170 165

Arg	Asn	Gly		Gly	Ser	Thr	Gln		Ile	Arg	Phe	Ser		Asp	Phe
mla sa	Dla a	G1	180 Db	a 1	a 1	C	T	185	17- 1	7	ml	3	190 D	T	T
1111	Pne	195	Pne	GIU	Glu	ser	200	GIU	vai	Asp	Inr	205	PIO	ьец	ьец
Gly	Ala 210	Gly	ГÀз	Phe	Ala	Thr 215	Asp	Pro	Ala	Val	Thr 220	Leu	Ala	His	Glu
Leu 225	Ile	His	Ala	Glu	His 230	Arg	Leu	Tyr	Gly	Ile 235	Ala	Ile	Asn	Pro	Asn 240
Arg	Val	Phe	Lys	Val 245	Asn	Thr	Asn	Ala	Tyr 250	Tyr	Glu	Met	Ser	Gly 255	Leu
Glu	Val	Ser	Phe 260	Glu	Glu	Leu	Arg	Thr 265	Phe	Gly	Gly	His	Asp 270	Ala	Lys
Phe	Ile	Asp 275	Ser	Leu	Gln	Glu	Asn 280	Glu	Phe	Arg	Leu	Tyr 285	Tyr	Tyr	Asn
ГÀв	Phe 290	Lys	Asp	Val	Ala	Ser 295	Thr	Leu	Asn	Lys	Ala 300	Lys	Ser	Ile	Ile
Gly 305	Thr	Thr	Ala	Ser	Leu 310	Gln	Tyr	Met	Lys	Asn 315	Val	Phe	Lys	Glu	Lys 320
Tyr	Leu	Leu	Ser	Glu 325	Asp	Thr	Ser	Gly	330 Lys	Phe	Ser	Val	Asp	Lys 335	Leu
Lys	Phe	Asp	Lys 340	Leu	Tyr	Lys	Met	Leu 345	Thr	Glu	Ile	Tyr	Thr 350	Glu	Asp
Asn	Phe	Val 355	Asn	Phe	Phe	Lys	Val 360	Ile	Asn	Arg	Lys	Thr 365	Tyr	Leu	Asn
Phe	Asp 370	Lys	Ala	Val	Phe	Arg 375	Ile	Asn	Ile	Val	Pro 380	Asp	Glu	Asn	Tyr
Thr 385	Ile	Lys	Asp	Gly	Phe 390	Asn	Leu	Lys	Gly	Ala 395	Asn	Leu	Ser	Thr	Asn 400
Phe	Asn	Gly	Gln	Asn 405	Thr	Glu	Ile	Asn	Ser 410	Arg	Asn	Phe	Thr	Arg 415	Leu
ГÀЗ	Asn	Phe	Thr 420	Gly	Leu	Phe	Glu	Phe 425	Tyr	Lys	Leu	Leu	Cys 430	Val	Arg
Gly	Ile	Ile 435	Pro	Phe	Lys	Thr	Lys 440	Ser	Leu	Asp	Glu	Gly 445	Tyr	Asn	Lys
Ala	Leu 450	Asn	Asp	Leu	Cys	Ile 455	Lys	Val	Asn	Asn	Trp 460	Asp	Leu	Phe	Phe
Ser 465	Pro	Ser	Glu	Asp	Asn 470	Phe	Thr	Asn	Asp	Leu 475	Asp	Lys	Val	Glu	Glu 480
Ile	Thr	Ala	Asp	Thr 485	Asn	Ile	Glu	Ala	Ala 490	Glu	Glu	Asn	Ile	Ser 495	Leu
Asp	Leu	Ile	Gln 500	Gln	Tyr	Tyr	Leu	Thr 505	Phe	Asp	Phe	Asp	Asn 510	Glu	Pro
Glu	Asn	Ile 515	Ser	Ile	Glu	Asn	Leu 520	Ser	Ser	Asp	Ile	Ile 525	Gly	Gln	Leu
Glu	Pro 530	Met	Pro	Asn	Ile	Glu 535	Arg	Phe	Pro	Asn	Gly 540	Lys	Lys	Tyr	Glu
Leu 545	Asp	Lys	Tyr	Thr	Met 550	Phe	His	Tyr	Leu	Arg 555	Ala	Gln	Glu	Phe	Glu 560
His	Gly	Asp	Ser	Arg 565	Ile	Ile	Leu	Thr	Asn 570	Ser	Ala	Glu	Glu	Ala 575	Leu
Leu	Lys	Pro	Asn 580	Val	Ala	Tyr	Thr	Phe 585	Phe	Ser	Ser	Lys	Tyr 590	Val	Lys

Lys	Ile	Asn 595	Lys	Ala	Val	Glu	Ala 600	Phe	Met	Phe	Leu	Asn 605	Trp	Ala	Glu
Glu	Leu 610	Val	Tyr	Asp	Phe	Thr 615	Asp	Glu	Thr	Asn	Glu 620	Val	Thr	Thr	Met
Asp 625	Lys	Ile	Ala	Asp	Ile 630	Thr	Ile	Ile	Val	Pro 635	Tyr	Ile	Gly	Pro	Ala 640
Leu	Asn	Ile	Gly	Asn 645	Met	Leu	Ser	Lys	Gly 650	Glu	Phe	Val	Glu	Ala 655	Ile
Ile	Phe	Thr	Gly 660	Val	Val	Ala	Met	Leu 665	Glu	Phe	Ile	Pro	Glu 670	Tyr	Ala
Leu	Pro	Val 675	Phe	Gly	Thr	Phe	Ala 680	Ile	Val	Ser	Tyr	Ile 685	Ala	Asn	Lys
Val	Leu 690	Thr	Val	Gln	Thr	Ile 695	Asn	Asn	Ala	Leu	Ser 700	Lys	Arg	Asn	Glu
Lys 705	Trp	Asp	Glu	Val	Tyr 710	ГÀа	Tyr	Thr	Val	Thr 715	Asn	Trp	Leu	Ala	Lys 720
Val	Asn	Thr	Gln	Ile 725	Asp	Leu	Ile	Arg	Glu 730	Lys	Met	Lys	ГÀа	Ala 735	Leu
Glu	Asn	Gln	Ala 740	Glu	Ala	Thr	Lys	Ala 745	Ile	Ile	Asn	Tyr	Gln 750	Tyr	Asn
Gln	Tyr	Thr 755	Glu	Glu	Glu	Lys	Asn 760	Asn	Ile	Asn	Phe	Asn 765	Ile	Asp	Asp
Leu	Ser 770	Ser	Lys	Leu	Asn	Glu 775	Ser	Ile	Asn	Ser	Ala 780	Met	Ile	Asn	Ile
Asn 785	Lys	Phe	Leu	Asp	Gln 790	Cys	Ser	Val	Ser	Tyr 795	Leu	Met	Asn	Ser	Met 800
Ile	Pro	Tyr	Ala	Val 805	Lys	Arg	Leu	Lys	Asp 810	Phe	Asp	Ala	Ser	Val 815	Arg
Asp	Val	Leu	Leu 820	Lys	Tyr	Ile	Tyr	Asp 825	Asn	Arg	Gly	Thr	Leu 830	Val	Leu
Gln	Val	Asp 835	Arg	Leu	ГÀз	Asp	Glu 840	Val	Asn	Asn	Thr	Leu 845	Ser	Ala	Asp
Ile	Pro 850	Phe	Gln	Leu	Ser	Lys 855	Tyr	Val	Asp	Asn	860 Lys	ГÀа	Leu	Leu	Ser
Thr 865	Phe	Thr	Glu	Tyr	Ile 870	ГÀЗ	Asn	Ile	Val	Asn 875	Thr	Ser	Ile	Leu	Ser 880
Ile	Val	Tyr	ГЛа	Lys 885	Asp	Asp	Leu	Ile	Asp 890	Leu	Ser	Arg	Tyr	Gly 895	Ala
Lys	Ile	Asn	Ile 900	Gly	Asp	Arg	Val	Tyr 905	Tyr	Asp	Ser	Ile	Asp 910	Lys	Asn
Gln	Ile	Lys 915	Leu	Ile	Asn	Leu	Glu 920	Ser	Ser	Thr	Ile	Glu 925	Val	Ile	Leu
ГÀа	Asn 930	Ala	Ile	Val	Tyr	Asn 935	Ser	Met	Tyr	Glu	Asn 940	Phe	Ser	Thr	Ser
Phe 945	Trp	Ile	Lys	Ile	Pro 950	Lys	Tyr	Phe	Ser	Lys 955	Ile	Asn	Leu	Asn	Asn 960
Glu	Tyr	Thr	Ile	Ile 965	Asn	СЛа	Ile	Glu	Asn 970	Asn	Ser	Gly	Trp	Lys 975	Val
Ser	Leu	Asn	Tyr 980	Gly	Glu	Ile	Ile	Trp 985	Thr	Leu	Gln	Asp	Asn 990	Lys	Gln
Asn	Ile	Gln 995	Arg	Val	Val	Phe	Lys		Ser	Gln	Met	Val	Asn 5	Ile	Ser
Asp	Tyr	Ile	Asn	Arg	Trp	Ile	Phe	Val	Thr	Ile	Thr	Asn	Asn	Arg	Leu

											Concinaca				
	1010)				1015	;				1020)			
Thr 1025		Ser	Lys	Ile	Tyr 1030		Asn	Gly	Arg	Leu 1035		Asp	Gln	Lys	Pro 1040
Ile	Ser	Asn	Leu	Gly 1045		Ile	His	Ala	Ser 1050		Lys	Ile	Met	Phe 1055	
Leu	Asp	Gly	Сув 1060	Arg	Asp	Pro		Arg 1065		Ile	Met	Ile	Lys 1070		Phe
Asn	Leu	Phe 1075		Lys	Glu		Asn 1080		Lys	Glu	Ile	Lys 1085		Leu	Tyr
Asp	Ser 1090		Ser	Asn	Ser	Gly 1095		Leu	Lys	Asp	Phe 1100		Gly	Asn	Tyr
Leu 1105		Tyr	Asp	ГÀа	Pro 1110		Tyr	Met	Leu	Asn 1115		Phe	Asp	Pro	Asn 1120
rys	Tyr	Val	Asp	Val 1125		Asn	Ile	Gly	Ile 1130		Gly	Tyr	Met	Tyr 1135	
Lys	Gly	Pro		Gly		Val	Val	Thr 1145		Asn	Ile	Tyr	Leu 1150		Ser
Thr	Leu	Tyr 1155		Gly	Thr	Lys	Phe 1160		Ile	Lys	Lys	Tyr 1165		Ser	Gly
Asn		Asp		Ile	Val	Arg 1175		Asn	Asp	Arg	Val 1180		Ile	Asn	Val
Val 1185		Lys	Asn	ГÀв	Glu 1190		Arg	Leu	Ala	Thr 1195		Ala	Ser	Gln	Ala 1200
Gly	Val	Glu	Lys	Ile 1205		Ser	Ala	Leu	Glu 1210		Pro	Asp	Val	Gly 1215	
Leu	Ser	Gln	Val 1220	Val	Val	Met	Lys	Ser 1225		Asp	Asp	Gln	Gly 1230		Arg
Asn	ГЛа	Cys 1235		Met	Asn	Leu	Gln 1240		Asn	Asn	Gly	Asn 1245		Ile	Gly
Phe	Ile 1250		Phe	His	Leu	Tyr 1255		Asn	Ile	Ala	Lys 1260		Val	Ala	Ser
Asn 1265		Tyr	Asn	Arg	Gln 1270		Gly	Lys	Ala	Ser 1275		Thr	Phe	Gly	Сув 1280
Ser	Trp	Glu	Phe	Ile 1285		Val	Asp	Asp	Gly 1290		Gly	Glu	Ser	Ser 1295	
)> SE .> LE														
	> TY > OF			Clos	trid	lium	botu	ılinu	ım						
< 400)> SE	QUEN	ICE :	3											
Met 1	Pro	Phe	Val	Asn 5	Lys	Pro	Phe	Asn	Tyr 10	Arg	Asp	Pro	Gly	Asn 15	Gly
Val	Asp	Ile	Ala 20	Tyr	Ile	Lys	Ile	Pro 25	Asn	Ala	Gly	Gln	Met 30	Gln	Pro
Val	Lys	Ala 35	Phe	Lys	Ile	His	Glu 40	Gly	Val	Trp	Val	Ile 45	Pro	Glu	Arg
Asp	Thr 50	Phe	Thr	Asn	Pro	Glu 55	Glu	Gly	Asp	Leu	Asn 60	Pro	Pro	Pro	Glu
Ala 65	Lys	Gln	Val	Pro	Val 70	Ser	Tyr	Tyr	Asp	Ser 75	Thr	Tyr	Leu	Ser	Thr 80
Asp	Asn	Glu	Lys	Asp 85	Asn	Tyr	Leu	Lys	Gly 90	Val	Ile	ГÀз	Leu	Phe 95	Asp

Arg	Ile	Tyr	Ser 100	Thr	Gly	Leu	Gly	Arg 105	Met	Leu	Leu	Ser	Phe 110	Ile	Val
Làs	Gly	Ile 115	Pro	Phe	Trp	Gly	Gly 120	Ser	Thr	Ile	Asp	Thr 125	Glu	Leu	Lys
Val	Ile 130	Asp	Thr	Asn	Сув	Ile 135	Asn	Val	Ile	Glu	Pro 140	Gly	Gly	Ser	Tyr
Arg 145	Ser	Glu	Glu	Leu	Asn 150	Leu	Val	Ile	Thr	Gly 155	Pro	Ser	Ala	Asp	Ile 160
Ile	Gln	Phe	Glu	Сув 165	Lys	Ser	Phe	Gly	His 170	Asp	Val	Phe	Asn	Leu 175	Thr
Arg	Asn	Gly	Tyr 180	Gly	Ser	Thr	Gln	Tyr 185	Ile	Arg	Phe	Ser	Pro 190	Asp	Phe
Thr	Phe	Gly 195	Phe	Glu	Glu	Ser	Leu 200	Glu	Val	Asp	Thr	Asn 205	Pro	Leu	Leu
Gly	Ala 210	Gly	Thr	Phe	Ala	Thr 215	Asp	Pro	Ala	Val	Thr 220	Leu	Ala	His	Glu
Leu 225	Ile	His	Ala	Ala	His 230	Arg	Leu	Tyr	Gly	Ile 235	Ala	Ile	Asn	Pro	Asn 240
Arg	Val	Leu	Lys	Val 245	Lys	Thr	Asn	Ala	Tyr 250	Tyr	Glu	Met	Ser	Gly 255	Leu
Glu	Val	Ser	Phe 260	Glu	Glu	Leu	Arg	Thr 265	Phe	Gly	Gly	Asn	Asp 270	Thr	Asn
Phe	Ile	Asp 275	Ser	Leu	Trp	Gln	Lys 280	Lys	Phe	Ser	Arg	Asp 285	Ala	Tyr	Asp
Asn	Leu 290	Gln	Asn	Ile	Ala	Arg 295	Ile	Leu	Asn	Glu	Ala 300	Lys	Thr	Ile	Val
Gly 305	Thr	Thr	Thr	Pro	Leu 310	Gln	Tyr	Met	Lys	Asn 315	Ile	Phe	Ile	Arg	Lys 320
Tyr	Phe	Leu	Ser	Glu 325	Aap	Ala	Ser	Gly	330 Lys	Ile	Ser	Val	Asn	335	Ala
Ala	Phe	Lys	Glu 340	Phe	Tyr	Arg	Val	Leu 345	Thr	Arg	Gly	Phe	Thr 350	Glu	Leu
Glu	Phe	Val 355	Asn	Pro	Phe	Lys	Val 360	Ile	Asn	Arg	Lys	Thr 365	Tyr	Leu	Asn
Phe	Asp 370	Lys	Ala	Val	Phe	Arg 375	Ile	Asn	Ile	Val	Pro 380	Asp	Glu	Asn	Tyr
Thr 385	Ile	Asn	Glu	Gly		Asn		Glu		Ala 395		Ser	Asn	Gly	Gln 400
Asn	Thr	Glu	Ile	Asn 405	Ser	Arg	Asn	Phe	Thr 410	Arg	Leu	Lys	Asn	Phe 415	Thr
Gly	Leu	Phe	Glu 420	Phe	Tyr	Lys	Leu	Leu 425	Cya	Val	Arg	Gly	Ile 430	Ile	Pro
Phe	Lys	Thr 435	Lys	Ser	Leu	Asp	Glu 440	Gly	Tyr	Asn	Lys	Ala 445	Leu	Asn	Tyr
Leu	Сув 450	Ile	Lys	Val	Asn	Asn 455	Trp	Asp	Leu	Phe	Phe 460	Ser	Pro	Ser	Glu
Asp 465	Asn	Phe	Thr	Asn	Asp 470	Leu	Asp	Lys	Val	Glu 475	Glu	Ile	Thr	Ala	Asp 480
Thr	Asn	Ile	Glu	Ala 485	Ala	Glu	Glu	Asn	Ile 490	Ser	Ser	Asp	Leu	Ile 495	Gln
Gln	Tyr	Tyr	Leu 500	Thr	Phe	Asp	Phe	Asp 505	Asn	Glu	Pro	Glu	Asn 510	Ile	Ser
Ile	Glu	Asn	Leu	Ser	Ser	Asp	Ile	Ile	Gly	Gln	Leu	Glu	Pro	Met	Pro

		515					520					525			
Asn	Ile 530	Glu	Arg	Phe	Pro	Asn 535	Gly	Lys	Lys	Tyr	Glu 540	Leu	Asp	Lys	Tyr
Thr 545	Met	Phe	His	Tyr	Leu 550	Arg	Ala	Gln	Glu	Phe 555	Glu	His	Gly	Asp	Ser 560
Arg	Ile	Ile	Leu	Thr 565	Asn	Ser	Ala	Glu	Glu 570	Ala	Leu	Leu	Lys	Pro 575	Asn
Val	Ala	Tyr	Thr 580	Phe	Phe	Ser	Ser	Lys 585	Tyr	Val	ГÀз	ГÀЗ	Ile 590	Asn	Lys
Ala	Val	Glu 595	Ala	Val	Ile	Phe	Leu 600	Ser	Trp	Ala	Glu	Glu 605	Leu	Val	Tyr
Asp	Phe 610	Thr	Asp	Glu	Thr	Asn 615	Glu	Val	Thr	Thr	Met 620	Asp	Lys	Ile	Ala
Asp 625	Ile	Thr	Ile	Ile	Val 630	Pro	Tyr	Ile	Gly	Pro 635	Ala	Leu	Asn	Ile	Gly 640
Asn	Met	Val	Ser	Lys 645	Gly	Glu	Phe	Val	Glu 650	Ala	Ile	Leu	Phe	Thr 655	Gly
Val	Val	Ala	Leu 660	Leu	Glu	Phe	Ile	Pro 665	Glu	Tyr	Ser	Leu	Pro 670	Val	Phe
Gly	Thr	Phe 675	Ala	Ile	Val	Ser	Tyr 680	Ile	Ala	Asn	Lys	Val 685	Leu	Thr	Val
Gln	Thr 690	Ile	Asn	Asn	Ala	Leu 695	Ser	Lys	Arg	Asn	Glu 700	ГÀв	Trp	Asp	Glu
Val 705	Tyr	Lys	Tyr	Thr	Val 710	Thr	Asn	Trp	Leu	Ala 715	Lys	Val	Asn	Thr	Gln 720
Ile	Asp	Leu	Ile	Arg 725	Glu	ГÀв	Met	Lys	Lys 730	Ala	Leu	Glu	Asn	Gln 735	Ala
Glu	Ala	Thr	Arg 740	Ala	Ile	Ile	Asn	Tyr 745	Gln	Tyr	Asn	Gln	Tyr 750	Thr	Glu
Glu	Glu	Lys 755	Asn	Asn	Ile	Asn	Phe 760	Asn	Ile	Asp	Asp	Leu 765	Ser	Ser	ГЛа
Leu	Asn 770	Arg	Ser	Ile	Asn	Arg 775	Ala	Met	Ile	Asn	Ile 780	Asn	Lys	Phe	Leu
Asp 785	Gln	Сла	Ser	Val	Ser 790	Tyr	Leu	Met	Asn	Ser 795	Met	Ile	Pro	Tyr	Ala 800
Val	Lys	Arg	Leu	Lys 805	Asp	Phe	Asp	Ala	Ser 810	Val	Arg	Asp	Val	Leu 815	Leu
Lys	Tyr	Ile	Tyr 820	Asp	Asn	Arg	Gly	Thr 825	Leu	Ile	Leu	Gln	Val 830	Asp	Arg
Leu	Lys	Asp 835	Glu	Val	Asn	Asn	Thr 840	Leu	Ser	Ala	Asp	Ile 845	Pro	Phe	Gln
Leu	Ser 850	Lys	Tyr	Val	Asn	Asp 855	Lys	Lys	Leu	Leu	Ser 860	Thr	Phe	Thr	Glu
Tyr 865	Ile	Lys	Asn	Ile	Val 870	Asn	Thr	Ser	Ile	Leu 875	Ser	Ile	Val	Tyr	880 FÅa
Lys	Asp	Asp	Leu	Ile 885	Asp	Leu	Ser	Arg	Tyr 890	Gly	Ala	ГÀв	Ile	Asn 895	Ile
Gly	Asp	Arg	Val 900	Tyr	Tyr	Asp	Ser	Ile 905	Asp	Lys	Asn	Gln	Ile 910	Lys	Leu
Ile	Asn	Leu 915	Glu	Ser	Ser	Thr	Ile 920	Glu	Val	Ile	Leu	Lys 925	Asn	Ala	Ile
Val	Tyr 930	Asn	Ser	Met	Tyr	Glu 935	Asn	Phe	Ser	Thr	Ser 940	Phe	Trp	Ile	Lys

Ile Pro Lys Tyr Phe Ser Lys Ile Asn Leu Asn Asn Glu Tyr Thr Ile 950 955 Ile Asn Cys Ile Glu Asn Asn Ser Gly Trp Lys Val Ser Leu Asn Tyr Gly Glu Ile Ile Trp Thr Leu Gln Asp Asn Lys Gln Asn Ile Gln Arg Val Val Phe Lys Tyr Ser Gln Met Val Asn Ile Ser Asp Tyr Ile Asn 1000 Arg Trp Met Phe Val Thr Ile Thr Asn Asn Arg Leu Thr Lys Ser Lys Ile Tyr Ile Asn Gly Arg Leu Ile Asp Gln Lys Pro Ile Ser Asn Leu Gly Asn Ile His Ala Ser Asn Lys Ile Met Phe Lys Leu Asp Gly Cys 1050 Arg Asp Pro Arg Arg Tyr Ile Met Ile Lys Tyr Phe Asn Leu Phe Asp 1065 Lys Glu Leu Asn Glu Lys Glu Ile Lys Asp Leu Tyr Asp Ser Gln Ser 1080 Asn Pro Gly Ile Leu Lys Asp Phe Trp Gly Asn Tyr Leu Gln Tyr Asp 1095 Lys Pro Tyr Tyr Met Leu Asn Leu Phe Asp Pro Asn Lys Tyr Val Asp 1110 1115 Val Asn Asn Ile Gly Ile Arg Gly Tyr Met Tyr Leu Lys Gly Pro Arg 1130 1125 Gly Ser Val Met Thr Thr Asn Ile Tyr Leu Asn Ser Thr Leu Tyr Met 1140 1145 Gly Thr Lys Phe Ile Ile Lys Lys Tyr Ala Ser Gly Asn Glu Asp Asn 1160 Ile Val Arg Asn Asn Asp Arg Val Tyr Ile Asn Val Val Lys Asn 1180 1175 Lys Glu Tyr Arg Leu Ala Thr Asn Ala Ser Gln Ala Gly Val Glu Lys Ile Leu Ser Ala Leu Glu Ile Pro Asp Val Gly Asn Leu Ser Gln Val 1205 1210 Val Val Met Lys Ser Lys Asp Asp Gln Gly Ile Arg Asn Lys Cys Lys Met Asn Leu Gln Asp Asn Asn Gly Asn Asp Ile Gly Phe Val Gly Phe 1240 His Leu Tyr Asp Asn Ile Ala Lys Leu Val Ala Ser Asn Trp Tyr Asn 1255 Arg Gln Val Gly Lys Ala Ser Arg Thr Phe Gly Cys Ser Trp Glu Phe Ile Pro Val Asp Asp Gly Trp Gly Glu Ser Ser Leu 1285 <210> SEQ ID NO 4 <211> LENGTH: 1296 <212> TYPE: PRT <213> ORGANISM: Clostridium botulinum <400> SEQUENCE: 4 Met Pro Leu Val Asn Gln Gln Ile Asn Tyr Tyr Asp Pro Val Asn Gly 5

Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Lys Met Gln Pro

_			20					25					30		
Val	Lys	Ala 35	Phe	Lys	Ile	His	Asn 40	Lys	Val	Trp	Val	Ile 45	Pro	Glu	Arg
Asp	Ile 50	Phe	Thr	Asn	Pro	Glu 55	Glu	Val	Asp	Leu	Asn 60	Pro	Pro	Pro	Glu
Ala 65	Lys	Gln	Val	Pro	Ile 70	Ser	Tyr	Tyr	Asp	Ser 75	Ala	Tyr	Leu	Ser	Thr 80
Asp	Asn	Glu	Lys	Asp 85	Asn	Tyr	Leu	Lys	Gly 90	Val	Ile	Lys	Leu	Phe 95	Glu
Arg	Ile	Tyr	Ser 100	Thr	Asp	Leu	Gly	Arg 105	Met	Leu	Leu	Ile	Ser 110	Ile	Val
Arg	Gly	Ile 115	Pro	Phe	Trp	Gly	Gly 120	Gly	Lys	Ile	Asp	Thr 125	Glu	Leu	ГЛа
Val	Ile 130	Asp	Thr	Asn	Cys	Ile 135	Asn	Ile	Ile	Gln	Leu 140	Asp	Asp	Ser	Tyr
Arg 145	Ser	Glu	Glu	Leu	Asn 150	Leu	Ala	Ile	Ile	Gly 155	Pro	Ser	Ala	Asn	Ile 160
Ile	Glu	Ser	Gln	Сув 165	Ser	Ser	Phe	Arg	Asp 170	Asp	Val	Leu	Asn	Leu 175	Thr
Arg	Asn	Gly	Tyr 180	Gly	Ser	Thr	Gln	Tyr 185	Ile	Arg	Phe	Ser	Pro 190	Asp	Phe
Thr	Val	Gly 195	Phe	Glu	Glu	Ser	Leu 200	Glu	Val	Asp	Thr	Asn 205	Pro	Leu	Leu
Gly	Ala 210	Gly	Lys	Phe	Ala	Gln 215	Asp	Pro	Ala	Val	Ala 220	Leu	Ala	His	Glu
Leu 225	Ile	His	Ala	Glu	His 230	Arg	Leu	Tyr	Gly	Ile 235	Ala	Ile	Asn	Thr	Asn 240
Arg	Val	Phe	Lys	Val 245	Asn	Thr	Asn	Ala	Tyr 250	Tyr	Glu	Met	Ala	Gly 255	Leu
Glu	Val	Ser	Leu 260	Glu	Glu	Leu	Ile	Thr 265	Phe	Gly	Gly	Asn	Asp 270	Ala	Lys
Phe	Ile	Asp 275	Ser	Leu	Gln	Lys	Lys 280	Glu	Phe	Ser	Leu	Tyr 285	Tyr	Tyr	Asn
ГÀа	Phe 290	ГÀЗ	Asp	Ile	Ala	Ser 295	Thr	Leu	Asn	ГÀа	Ala 300	ГÀа	Ser	Ile	Val
Gly 305	Thr	Thr	Ala	Ser	Leu 310	Gln	Tyr	Met	ГÀа	Asn 315	Val	Phe	ГÀа	Glu	Lys 320
Tyr	Leu	Leu	Ser	Glu 325	Asp	Ala	Thr	Gly	330 Lys	Phe	Leu	Val	Asp	Arg 335	Leu
ГÀа	Phe	Asp	Glu 340	Leu	Tyr	Lys	Leu	Leu 345	Thr	Glu	Ile	Tyr	Thr 350	Glu	Asp
Asn	Phe	Val 355	Lys	Phe	Phe	Lys	Val 360	Leu	Asn	Arg	Lys	Thr 365	Tyr	Leu	Asn
Phe	Asp 370	ГÀа	Ala	Val	Phe	Lys 375	Ile	Asn	Ile	Val	Pro 380	Asp	Val	Asn	Tyr
Thr 385	Ile	His	Asp	Gly	Phe 390	Asn	Leu	Arg	Asn	Thr 395	Asn	Leu	Ala	Ala	Asn 400
Phe	Asn	Gly	Gln	Asn 405	Ile	Glu	Ile	Asn	Asn 410	Lys	Asn	Phe	Asp	Lys 415	Leu
Lys	Asn	Phe	Thr 420	Gly	Leu	Phe	Glu	Phe 425	Tyr	Lys	Leu	Leu	Cys 430	Val	Arg
Gly	Ile	Ile 435	Thr	Ser	Lys	Thr	Lys 440	Ser	Leu	Asp	Glu	Gly 445	Tyr	Asn	Lys

Ala	Leu 450	Asn	Glu	Leu	Cys	Ile 455	Lys	Val	Asn	Asn	Trp 460	Asp	Leu	Phe	Phe
Ser 465	Pro	Ser	Glu	Asp	Asn 470	Phe	Thr	Asn	Asp	Leu 475	Asp	Lys	Val	Glu	Glu 480
Ile	Thr	Ser	Asp	Thr 485	Asn	Ile	Glu	Ala	Ala 490	Glu	Glu	Asn	Ile	Ser 495	Leu
Asp	Leu	Ile	Gln 500	Gln	Tyr	Tyr	Leu	Asn 505	Phe	Asn	Phe	Asp	Asn 510	Glu	Pro
Glu	Asn	Thr 515	Ser	Ile	Glu	Asn	Leu 520	Ser	Ser	Asp	Ile	Ile 525	Gly	Gln	Leu
Glu	Pro 530	Met	Pro	Asn	Ile	Glu 535	Arg	Phe	Pro	Asn	Gly 540	ГЛа	ГЛа	Tyr	Glu
Leu 545	Asn	ГЛа	Tyr	Thr	Met 550	Phe	His	Tyr	Leu	Arg 555	Ala	Gln	Glu	Phe	Lys 560
His	Ser	Asn	Ser	Arg 565	Ile	Ile	Leu	Thr	Asn 570	Ser	Ala	Lys	Glu	Ala 575	Leu
Leu	Lys	Pro	Asn 580	Ile	Val	Tyr	Thr	Phe 585	Phe	Ser	Ser	Lys	Tyr 590	Ile	ГХа
Ala	Ile	Asn 595	Lys	Ala	Val	Glu	Ala 600	Val	Thr	Phe	Val	Asn 605	Trp	Ile	Glu
Asn	Leu 610	Val	Tyr	Asp	Phe	Thr 615	Asp	Glu	Thr	Asn	Glu 620	Val	Ser	Thr	Met
Asp 625	Lys	Ile	Ala	Asp	Ile 630	Thr	Ile	Val	Ile	Pro 635	Tyr	Ile	Gly	Pro	Ala 640
Leu	Asn	Ile	Gly	Asn 645	Met	Ile	Tyr	Lys	Gly 650	Glu	Phe	Val	Glu	Ala 655	Ile
Ile	Phe	Ser	Gly 660	Ala	Val	Ile	Leu	Leu 665	Glu	Ile	Val	Pro	Glu 670	Ile	Ala
Leu	Pro	Val 675	Leu	Gly	Thr	Phe	Ala 680	Leu	Val	Ser	Tyr	Val 685	Ser	Asn	ГÀз
Val	Leu 690	Thr	Val	Gln	Thr	Ile 695	Asp	Asn	Ala	Leu	Ser 700	Lys	Arg	Asn	Glu
Lуs 705	Trp	Asp	Glu	Val	Tyr 710	Lys	Tyr	Ile	Val	Thr 715	Asn	Trp	Leu	Ala	Ile 720
Val	Asn	Thr	Gln	Ile 725	Asn	Leu	Ile	Arg	Glu 730	ГЛа	Met	ГÀа	ГÀа	Ala 735	Leu
Glu	Asn	Gln	Ala 740	Glu	Ala	Thr	Lys	Ala 745	Ile	Ile	Asn	Tyr	Gln 750	Tyr	Asn
Gln	Tyr	Thr 755	Glu	Glu	Glu	Lys	Asn 760	Asn	Ile	Asn	Phe	Asn 765	Ile	Asp	Asp
Leu	Ser 770	Ser	Lys	Leu	Asn	Glu 775	Ser	Ile	Asn	Ser	Ala 780	Met	Ile	Asn	Ile
Asn 785	ГÀв	Phe	Leu	Asp	Gln 790	Cys	Ser	Val	Ser	Tyr 795	Leu	Met	Asn	Ser	Met 800
Ile	Pro	Tyr	Ala	Val 805	Lys	Arg	Leu	Lys	Asp 810	Phe	Asp	Ala	Ser	Val 815	Arg
Asp	Val	Leu	Leu 820	Lys	Tyr	Ile	Tyr	Asp 825	Asn	Arg	Gly	Thr	Leu 830	Ile	Gly
Gln	Val	Asn 835	Arg	Leu	Lys	Asp	Lys 840	Val	Asn	Asn	Thr	Leu 845	Ser	Ala	Asp
Ile	Pro 850	Phe	Gln	Leu	Ser	Lys 855	Tyr	Val	Asp	Asn	Lys	ГЛя	Leu	Leu	Ser

Thr 865	Phe	Thr	Glu	Tyr	Ile 870	Lys	Asn	Ile	Thr	Asn 875	Ala	Ser	Ile	Leu	Ser 880
Ile	Val	Tyr	Lys	Asp 885	Asp	Asp	Leu	Ile	Asp 890	Leu	Ser	Arg	Tyr	Gly 895	Ala
Glu	Ile	Tyr	Asn 900	Gly	Asp	Lys	Val	Tyr 905	Tyr	Asn	Ser	Ile	Asp 910	Lys	Asn
Gln	Ile	Arg 915	Leu	Ile	Asn	Leu	Glu 920	Ser	Ser	Thr	Ile	Glu 925	Val	Ile	Leu
Lys	Lys 930	Ala	Ile	Val	Tyr	Asn 935	Ser	Met	Tyr	Glu	Asn 940	Phe	Ser	Thr	Ser
Phe 945	Trp	Ile	Arg	Ile	Pro 950	Lys	Tyr	Phe	Asn	Ser 955	Ile	Ser	Leu	Asn	Asn 960
Glu	Tyr	Thr	Ile	Ile 965	Asn	Cys	Met	Glu	Asn 970	Asn	Ser	Gly	Trp	Lys 975	Val
Ser	Leu	Asn	Tyr 980	Gly	Glu	Ile	Ile	Trp 985	Thr	Phe	Gln	Asp	Thr 990	Gln	Glu
Ile	Lys	Gln 995	Arg	Val	Val	Phe	Lys 1000		Ser	Gln	Met	Ile 1009		Ile	Ser
Asp	Tyr 1010		Asn	Arg	Trp	Ile 101	Phe	Val	Thr	Ile	Thr 102		Asn	Arg	Ile
Thr 1025		Ser	Lys	Ile	Tyr 103		Asn	Gly	Arg	Leu 103		Asp	Gln	Lys	Pro 1040
Ile	Ser	Asn	Leu	Gly 104		Ile	His	Ala	Ser 1050		Lys	Ile	Met	Phe 1055	_
Leu	Asp	Gly	Cys		Asp	Pro	His	Arg 1065		Ile	Val	Ile	Lys 1070	_	Phe
Asn	Leu	Phe 1075	_	Lys	Glu	Leu	Ser 1080		Lys	Glu	Ile	Lys 1089		Leu	Tyr
Asp	Asn 1090		Ser	Asn	Ser	Gly 1099	Ile 5	Leu	Lys	Asp	Phe	_	Gly	Asp	Tyr
Leu 1105		Tyr	Asp	Lys	Ser 1110		Tyr	Met	Leu	Asn 111		Tyr	Asp	Pro	Asn 1120
Lys	Tyr	Val	Asp	Val 112		Asn	Val	Gly	Ile 1130		Gly	Tyr	Met	Tyr 1135	
Lys	Gly	Pro	Arg 1140		Asn	Val	Met	Thr 1145		Asn	Ile	Tyr	Leu 1150		Ser
Ser	Leu	Tyr 1155		Gly	Thr	Lys	Phe 1160		Ile	Lys	Lys	Tyr 1169		Ser	Gly
Asn	Lys 1170		Asn	Ile	Val	Arg 1175	Asn 5	Asn	Asp	Arg	Val 118		Ile	Asn	Val
Val 1185		Lys	Asn	ГЛа	Glu 119		Arg	Leu	Ala	Thr 119		Ala	Ser	Gln	Ala 1200
Gly	Val	Glu	Lys	Ile 120!		Ser	Ala	Leu	Glu 121		Pro	Asp	Val	Gly 1215	
Leu	Ser	Gln	Val 1220		Val	Met	Lys	Ser 1225		Asn	Asp	Gln	Gly 1230		Thr
Asn	Lys	Cys 1235	_	Met	Asn	Leu	Gln 1240	_	Asn	Asn	Gly	Asn 1245	_	Ile	Gly
Phe	Ile 1250	_	Phe	His	Gln	Phe 125	Asn	Asn	Ile	Ala	Lys		Val	Ala	Ser
Asn 1265	_	Tyr	Asn	Arg	Gln 1270		Glu	Arg	Ser	Ser 127	_	Thr	Leu	Gly	Cys 1280
Ser	Trp	Glu	Phe	Ile	Pro	Val	Asp	Asp	Gly	Trp	Arg	Glu	Arg	Pro	Leu

-continued

1290

1285

<210> SEQ ID NO 5 <211> LENGTH: 206 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5 Met Ala Glu Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val 35 40 45 Met Leu Asp Glu Gln Gly Glu Gln Leu Asp Arg Val Glu Glu Gly Met Asn His Ile Asn Gln Asp Met Lys Glu Ala Glu Lys Asn Leu Lys Asp 65 70 75 80 Leu Gly Lys Cys Cys Gly Leu Phe Ile Cys Pro Cys Asn Lys Leu Lys Ser Ser Asp Ala Tyr Lys Lys Ala Trp Gly Asn Asn Gln Asp Gly Val Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala 120 Ile Ser Gly Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn 135 Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly Ile Ile Gly Asn Leu 150 Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Thr Arg Ile 185 Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly <210> SEQ ID NO 6 <211> LENGTH: 206 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 6 Met Ala Glu Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Gly Met Asp Gln Ile Asn Lys Asp Met Lys Glu Ala Glu Lys Asn Leu Thr Asp Leu Gly Lys Phe Cys Gly Leu Cys Val Cys Pro Cys Asn Lys Leu Lys Ser Ser Asp Ala Tyr Lys Lys Ala Trp Gly Asn Asn Gln Asp Gly Val Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala

-continued

Ile Ser Gly Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn 135 Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly Ile Ile Gly Asn Leu Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly <210> SEQ ID NO 7 <211> LENGTH: 206 <212> TYPE: PRT <213> ORGANISM: Macaca mulatta <400> SEQUENCE: 7 Met Ala Glu Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg 10 Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val 40 Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly Met Asp Gln Ile Asn Lys Asp Met Lys Glu Ala Glu Lys Asn Leu Thr Asp Leu Gly Lys Phe Cys Gly Leu Cys Val Cys Pro Cys Asn Lys Leu Lys Ser Ser Asp Ala Tyr Lys Lys Ala Trp Gly Asn Asn Gln Asp Gly Val 105 Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala 120 Ile Ser Gly Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly Ile Ile Gly Asn Leu Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg 170 Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly 195 <210> SEQ ID NO 8 <211> LENGTH: 206 <212> TYPE: PRT <213> ORGANISM: Rattus norvegicus <400> SEQUENCE: 8 Met Ala Glu Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val

		35					40					45			
Met	Leu 50	Asp	Glu	Gln	Gly	Glu 55	Gln	Leu	Asp	Arg	Val 60	Glu	Glu	Gly	Met
Asn 65	His	Ile	Asn	Gln	Asp 70	Met	Lys	Glu	Ala	Glu 75	Lys	Asn	Leu	Lys	Asp 80
Leu	Gly	Lys	Сув	Сув 85	Gly	Leu	Phe	Ile	Сув 90	Pro	CÀa	Asn	Lys	Leu 95	ГÀа
Ser	Ser	Asp	Ala 100	Tyr	Lys	Lys	Ala	Trp 105	Gly	Asn	Asn	Gln	Asp 110	Gly	Val
Val	Ala	Ser 115	Gln	Pro	Ala	Arg	Val 120	Val	Asp	Glu	Arg	Glu 125	Gln	Met	Ala
Ile	Ser 130	Gly	Gly	Phe	Ile	Arg 135	Arg	Val	Thr	Asn	Asp 140	Ala	Arg	Glu	Asn
Glu 145	Met	Asp	Glu	Asn	Leu 150	Glu	Gln	Val	Ser	Gly 155	Ile	Ile	Gly	Asn	Leu 160
Arg	His	Met	Ala	Leu 165	Asp	Met	Gly	Asn	Glu 170	Ile	Asp	Thr	Gln	Asn 175	Arg
Gln	Ile	Asp	Arg 180	Ile	Met	Glu	Lys	Ala 185	Asp	Ser	Asn	ГÀа	Thr 190	Arg	Ile
Asp	Glu	Ala 195	Asn	Gln	Arg	Ala	Thr 200	Lys	Met	Leu	Gly	Ser 205	Gly		
<211 <212	0 > SI L > LI 2 > TY 3 > OF	ENGTI PE:	H: 20 PRT	06	cus i	norve	eaic∪	ıs							
	D> SI														
					_		_	_	~-		~ 7	~-7		~-7	_
1	Ala		_	5	_		_		10					15	_
_	Ala	_	20			_		25					30		
	Gln	35					40	_		_		45			
Met	Leu 50	Asp	Glu	Gln	Gly	Glu 55	Gln	Leu	Glu	Arg	Ile 60	Glu	Glu	Gly	Met
65	Gln				70					75					80
Leu	Gly	Lys	Phe	Сув 85	Gly	Leu	Cys	Val	Gys	Pro	Cys	Asn	Lys	Leu 95	ГÀа
Ser	Ser	Asp	Ala 100	Tyr	ràa	ГÀа	Ala	Trp 105	Gly	Asn	Asn	Gln	Asp 110	Gly	Val
Val	Ala	Ser 115	Gln	Pro	Ala	Arg	Val 120	Val	Asp	Glu	Arg	Glu 125	Gln	Met	Ala
Ile	Ser 130	Gly	Gly	Phe	Ile	Arg 135	Arg	Val	Thr	Asn	Asp 140	Ala	Arg	Glu	Asn
Glu 145		-	Gl u	Asn	Leu	Glu	Gln	Val	Ser	Gly 155	Ile	Ile	Gly	Asn	Leu 160
	Met	Asp	Giu		150					155					
	Met	_				Met	Gly	Asn	Glu 170		Asp	Thr	Gln	Asn 175	
Arg		Met	Ala	Leu 165	Asp				170	Ile				175	Arg
Arg Gln	His	Met Asp	Ala Arg 180	Leu 165 Ile	Asp Met	Glu	Lys	Ala 185	170 Asp	Ile Ser	Asn	Lys	Thr 190	175	Arg

```
<210> SEQ ID NO 10
<211> LENGTH: 206
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 10
Met Ala Glu Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg
Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met
Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val
Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Gly Met
Asp Gln Ile Asn Lys Asp Met Lys Glu Ala Glu Lys Asn Leu Thr Asp 65 70 75 80
Leu Gly Lys Phe Cys Gly Leu Cys Val Cys Pro Cys Asn Lys Leu Lys
Ser Ser Asp Ala Tyr Lys Lys Ala Trp Gly Asn Asn Gln Asp Gly Val
                              105
Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala
                          120
Ile Ser Gly Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn
Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly Ile Ile Gly Asn Leu
                             155
Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg
                         170
Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Thr Arg Ile
                              185
Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly
<210> SEQ ID NO 11
<211> LENGTH: 206
<212> TYPE: PRT
<213 > ORGANISM: Gallus gallus
<400> SEQUENCE: 11
Met Ala Glu Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg
Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met
Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val 35 40 45
Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly Met
Asp Gln Ile Asn Lys Asp Met Lys Glu Ala Glu Lys Asn Leu Thr Asp
Leu Gly Lys Phe Cys Gly Leu Cys Val Cys Pro Cys Asn Lys Leu Lys
Ser Ser Asp Ala Tyr Lys Lys Ala Trp Gly Asn Asn Gln Asp Gly Val
                       105
Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala
                           120
```

-continued

Ile Ser Gly Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn 135 Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly Ile Ile Gly Asn Leu Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg 170 Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Thr Arg Ile 185 Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly <210> SEQ ID NO 12 <211> LENGTH: 204 <212> TYPE: PRT <213> ORGANISM: Carassius auratus <400> SEQUENCE: 12 Met Ala Glu Asp Ala Asp Met Arg As
n Glu Leu Ser Asp Met Gl
n Gln $\,$ Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly Met Asp Gln Ile Asn Lys Asp Met Lys Asp Ala Glu Lys Asn Leu Asn Asp Leu Gly Lys Phe Cys Gly Leu Cys Ser Cys Pro Cys Asn Lys Met Lys Ser Gly Gly Ser Lys Ala Trp Gly Asn Asn Gln Asp Gly Val Val Ala 105 Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala Ile Ser Gly Gly Phe Ile Arg Arg Val Thr Asp Asp Ala Arg Glu Asn Glu Met 135 Asp Glu Asn Leu Glu Gln Val Gly Gly Ile Ile Gly Asn Leu Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly <210> SEQ ID NO 13 <211> LENGTH: 203 <212> TYPE: PRT <213> ORGANISM: Carassius auratus <400> SEQUENCE: 13 Met Ala Asp Glu Ala Asp Met Arg Asn Glu Leu Thr Asp Met Gln Ala 5 $\hbox{Arg Ala Asp Gln Leu Gly Asp Glu Ser Leu Glu Ser Thr Arg Arg Met } \\$ 25 Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val 40

-continued

Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Gly Met Asp Gln Ile Asn Lys Asp Met Lys Glu Ala Glu Lys Asn Leu Thr Asp Leu Gly Asn Leu Cys Gly Leu Cys Pro Cys Pro Cys Asn Lys Leu Lys $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$ Gly Gly Gln Ser Trp Gly Asn Asn Gln Asp Gly Val Val Ser Ser 105 Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala Ile Ser Gly Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn Glu Met Asp Glu Asn Leu Glu Gln Val Gly Ser Ile Ile Gly Asn Leu Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg Gln Ile Asp Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly <210> SEQ ID NO 14 <211> LENGTH: 204 <212> TYPE: PRT <213> ORGANISM: Danio rerio <400> SEQUENCE: 14 Met Ala Glu Asp Ser Asp Met Arg Asn Glu Leu Ala Asp Met Gln Gln 10 Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Gly Met Asp Gln Ile Asn Lys Asp Met Lys Asp Ala Glu Lys Asn Leu Asn Asp Leu Gly Lys Phe Cys Gly Leu Cys Ser Cys Pro Cys Asn Lys Met Lys Ser Gly Ala Ser Lys Ala Trp Gly Asn Asn Gln Asp Gly Val Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala Ile Ser Gly Gly Phe Ile Arg Arg Val Thr Asp Asp Ala Arg Glu Asn Glu Met 135 Asp Glu Asn Leu Glu Gln Val Gly Gly Ile Ile Gly Asn Leu Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Thr Arg Ile Asp Glu 185 Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly 195 200

-continued

<211> LENGTH: 203 <212> TYPE: PRT <213> ORGANISM: Danio rerio <400> SEQUENCE: 15 Met Ala Asp Glu Ser Asp Met Arg Asn Glu Leu Asn Asp Met Gln Ala $\hbox{Arg Ala Asp Gln Leu Gly Asp Glu Ser Leu Glu Ser Thr Arg Arg Met } \\$ Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val 35 40 45 Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly Met Asp Gln Ile Asn Lys Asp Met Lys Glu Ala Glu Lys Asn Leu Thr Asp Leu Gly Asn Leu Cys Gly Leu Cys Pro Cys Pro Cys Asn Lys Leu Lys 85 90 95 Gly Gly Gly Gln Ser Trp Gly Asn Asn Gln Asp Gly Val Val Ser Ser $100 \ \ 105 \ \ 110$ Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala Ile Ser Gly Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn Glu Met Asp 135 Glu Asn Leu Glu Gln Val Gly Ser Ile Ile Gly Asn Leu Arg His Met 150 155 Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg Gln Ile Asp Arg Ile Met Asp Met Ala Asp Ser Asn Lys Thr Arg Ile Asp Glu Ala 185 Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly 195 <210> SEQ ID NO 16 <211> LENGTH: 210 <212> TYPE: PRT <213> ORGANISM: Torpedo marmorata <400> SEQUENCE: 16 Met Glu Asn Ser Val Glu Asn Ser Met Asp Pro Arg Ser Glu Gln Glu Glu Met Gln Arg Cys Ala Asp Gln Ile Thr Asp Glu Ser Leu Glu Ser Thr Arg Arg Met Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$ Arg Thr Leu Val Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly Met Asp Gln Ile Asn Lys Asp Met Lys Glu Ala Glu Lys Asn Leu Ser Asp Leu Gly Lys Cys Cys Gly Leu Cys Ser Cys Pro Cys Asn Lys Leu Lys Asn Phe Glu Ala Gly Gly Ala Tyr Lys Lys Val Trp 105 Gly Asn Asn Gln Asp Gly Val Val Ala Ser Gln Pro Ala Arg Val Met 120 Asp Asp Arg Glu Gln Met Ala Met Ser Gly Gly Tyr Ile Arg Arg Ile

135

```
Thr Asp Asp Ala Arg Glu Asn Glu Met Glu Glu Asn Leu Asp Gln Val
                  150
                                      155
Gly Ser Ile Ile Gly Asn Leu Arg His Met Ala Leu Asp Met Ser Asn
Glu Ile Gly Ser Gln Asn Ala Gln Ile Asp Arg Ile Val Val Lys Gly
Asp Met Asn Lys Ala Arg Ile Asp Glu Ala Asn Lys His Ala Thr Lys
<210> SEQ ID NO 17
<211> LENGTH: 206
<212> TYPE: PRT
<213 > ORGANISM: Xenopus laevis
<400> SEQUENCE: 17
Met Ala Asp Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg
Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met
Leu Gln Tyr Val Glu Gly Ser Lys Asp Ala Gly Ile Arg Thr Leu Val
                         40
Met Leu Asp Glu Gln Gly Glu Gln Leu Asp Arg Val Glu Gly Met
                      55
Asn His Ile Asn Gln Asp Met Lys Glu Ala Glu Lys Asn Leu Lys Asp
Leu Gly Lys Cys Cys Gly Leu Phe Ile Cys Pro Cys Asn Lys Leu Lys
Ser Ser Gly Ala Tyr Asn Lys Ala Trp Gly Asn Asn Gln Asp Gly Val
                            105
Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala
                           120
Ile Ser Gly Gly Phe Val Arg Arg Val Thr Asn Asp Ala Arg Glu Thr
Glu Met Asp Glu Asn Leu Glu Gln Val Gly Gly Ile Ile Gly Asn Leu
                           155
Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg
Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Ala Arg Ile
Asp Glu Ala Asn Lys His Ala Thr Lys Met Leu Gly Ser Gly
<210> SEQ ID NO 18
<211> LENGTH: 206
<212> TYPE: PRT
<213> ORGANISM: Xenopus laevis
<400> SEQUENCE: 18
Met Ala Asp Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg
Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met
                              25
Leu Gln Tyr Val Glu Gly Ser Lys Asp Ala Gly Ile Arg Thr Leu Val
                       40
```

-continued

Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly Met Glu Gln Ile Asn Lys Asp Met Lys Glu Ala Glu Lys Asn Leu Thr Asp Leu Gly Lys Phe Cys Gly Leu Cys Val Cys Pro Cys Asn Lys Leu Lys Ser Ser Asp Ala Tyr Lys Lys Ala Trp Gly Asn Asn Gln Asp Gly Val Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala Ile Ser Gly Gly Phe Val Arg Arg Val Thr Asn Asp Ala Arg Glu Thr 130 140 Glu Met Asp Glu Asn Leu Glu Gln Val Gly Gly Ile Ile Gly Asn Leu Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Ala Arg Ile 185 Asp Glu Ala Asn Lys His Ala Thr Lys Met Leu Gly Ser Gly 200 <210> SEQ ID NO 19 <211> LENGTH: 212 <212> TYPE: PRT <213> ORGANISM: Strongylocentrotus purpuratus <400> SEQUENCE: 19 Met Glu Asp Gln Asn Asp Met Asn Met Arg Ser Glu Leu Glu Glu Ile 10 Gln Met Gln Ser Asn Met Gln Thr Asp Glu Ser Leu Glu Ser Thr Arg 25 Arg Met Leu Gln Met Ala Glu Glu Ser Gln Asp Met Gly Ile Lys Thr Leu Val Met Leu Asp Glu Gln Gly Glu Gln Leu Asp Arg Ile Glu Glu Gly Met Asp Gln Ile Asn Thr Asp Met Arg Glu Ala Glu Lys Asn Leu Thr Gly Leu Glu Lys Cys Cys Gly Ile Cys Val Cys Pro Trp Lys Lys 85 90 95 Leu Gly Asn Phe Glu Lys Gly Asp Asp Tyr Lys Lys Thr Trp Lys Gly $100 \\ 105 \\ 110$ Asn Asp Asp Gly Lys Val Asn Ser His Gln Pro Met Arg Met Glu Asp Asp Arg Asp Gly Cys Gly Gly Asn Ala Ser Met Ile Thr Arg Ile Thr Asn Asp Ala Arg Glu Asp Glu Met Asp Glu Asn Leu Thr Gln Val Ser Ser Ile Val Gly Asn Leu Arg His Met Ala Ile Asp Met Gln Ser Glu 170 Ile Gly Ala Gln Asn Ser Gln Val Gly Arg Ile Thr Ser Lys Ala Glu Ser Asn Glu Gly Arg Ile Asn Ser Ala Asp Lys Arg Ala Lys Asn Ile 200 Leu Arg Asn Lys

-continued

210 <210> SEQ ID NO 20 <211> LENGTH: 212 <212> TYPE: PRT <213> ORGANISM: Drosophila melanogaster <400> SEQUENCE: 20 Met Pro Ala Asp Pro Ser Glu Glu Val Ala Pro Gln Val Pro Lys Thr Glu Leu Glu Glu Leu Gln Ile Asn Ala Gln Gly Val Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met Leu Ala Leu Cys Glu Glu Ser Lys Glu Ala Gly Ile Arg Thr Leu Val Ala Leu Asp Asp Gln Gly Glu Gln Leu Asp Arg Ile Glu Glu Gly Met Asp Gln Ile Asn Ala Asp Met Arg Glu Ala Glu Lys Asn Leu Ser Gly Met Glu Lys Cys Cys Gly Ile Cys Val Leu Pro Cys Asn Lys Ser Gln Ser Phe Lys Glu Asp Asp Gly Thr Trp \$100\$Lys Gly Asn Asp Asp Gly Lys Val Val Asn Asn Gln Pro Gln Arg Val 120 Met Asp Asp Arg Asn Gly Met Met Ala Gln Ala Gly Tyr Ile Gly Arg 135 Ile Thr Asn Asp Ala Arg Glu Asp Glu Met Glu Glu Asn Met Gly Gln 150 155 Val Asn Thr Met Ile Gly Asn Leu Arg Asn Met Ala Leu Asp Met Gly Ser Glu Leu Glu Asn Gln Asn Arg Gln Ile Asp Arg Ile Asn Arg Lys 185 Gly Glu Ser Asn Glu Ala Arg Ile Ala Val Ala Asn Gln Arg Ala His 200 Gln Leu Leu Lys 210 <210> SEQ ID NO 21 <211> LENGTH: 212 <212> TYPE: PRT <213 > ORGANISM: Hirudo medicinalis <400> SEQUENCE: 21 Met Ala Lys Asp Ile Lys Pro Lys Pro Ala Asn Gly Arg Asp Ser Pro Thr Asp Leu Gln Glu Ile Gln Leu Gln Met Asn Ala Ile Thr Asp Asp Ser Leu Glu Ser Thr Arg Arg Met Leu Ala Met Cys Glu Glu Ser Lys 40 Asp Ala Gly Ile Arg Thr Leu Val Met Leu Asp Glu Gln Gly Glu Gln 55 Leu Asp Arg Ile Glu Glu Gly Met Asp Gln Ile Asn Gln Asp Met Arg

Ile Leu Pro Trp Lys Arg Thr Lys Asn Phe Asp Lys Gly Ala Glu Trp

Asp Ala Glu Lys Asn Leu Glu Gly Met Glu Lys Cys Cys Gly Leu Cys

100			105					110		
Asn Lys Gly Asp		Lys Va 12	l Asn	Thr	Asp	Gly	Pro 125		Leu	Val
Val Gly Asp Gly	Asn Met	Gly Pr 135	o Ser	Gly	Gly	Phe 140	Ile	Thr	Lys	Ile
Thr Asn Asp Ala 145	Arg Glu 150	Glu Gl	u Met	Glu	Gln 155	Asn	Met	Gly	Glu	Val 160
Ser Asn Met Ile	Ser Asn 165	Leu Ar	g Asn	Met 170	Ala	Val	Asp	Met	Gly 175	Ser
Glu Ile Asp Ser 180		Arg Gl	n Val 185	Asp	Arg	Ile	Asn	Asn 190	Lys	Met
Thr Ser Asn Gln 195	Leu Arg	Ile Se 20		Ala	Asn	ГЛа	Arg 205	Ala	Ser	Lys
Leu Leu Lys Glu 210										
<210> SEQ ID NO <211> LENGTH: 2 <212> TYPE: PRT <213> ORGANISM:	12	pealei								
<400> SEQUENCE:	22									
Met Ser Ala Asn 1	Gly Glu 5	Val Gl	u Val	Pro 10	Lys	Thr	Glu	Leu	Glu 15	Glu
Ile Gln Gln Gln 20	Cys Asn	Gln Va	1 Thr 25	Asp	Asp	Ser	Leu	Glu 30	Ser	Thr
Arg Arg Met Leu 35	. Asn Met	Cys Gl 40		Ser	Lys	Glu	Ala 45	Gly	Ile	Arg
Thr Leu Val Met 50	Leu Asp	Glu Gl 55	n Gly	Glu	Gln	Leu 60	Asp	Arg	Ile	Glu
Glu Gly Leu Asp 65	Gln Ile 70	Asn Gl	n Asp	Met	Lys 75	Asp	Ala	Glu	ГÀЗ	Asn 80
Leu Glu Gly Met	Glu Lys 85	Сув Су	s Gly	Leu 90	Сла	Val	Leu	Pro	Trp 95	Lys
Arg Gly Lys Ser		Lys Se	r Gly 105	Asp	Tyr	Ala	Asn	Thr 110	Trp	Lys
Lys Asp Asp Asp 115	Gly Pro	Thr As		Asn	Gly	Pro	Arg 125	Val	Thr	Val
Gly Asp Gln Asn 130	Gly Met	Gly Pr 135	o Ser	Ser	Gly	Tyr 140	Val	Thr	Arg	Ile
Thr Asn Asp Ala 145	Arg Glu 150	Asp As	p Met	Glu	Asn 155	Asn	Met	ГÀа	Glu	Val 160
Ser Ser Met Ile	Gly Asn 165	Leu Ar	g Asn	Met 170	Ala	Ile	Asp	Met	Gly 175	Asn
Glu Ile Gly Ser 180		Arg Gl	n Val 185	Asp	Arg	Ile	Gln	Gln 190	Lys	Ala
Glu Ser Asn Glu 195	. Ser Arg	Ile As	_	Ala	Asn	Lys	Lys 205	Ala	Thr	Lys
Leu Leu Lys Asn 210										
<210> SEQ ID NO <211> LENGTH: 2 <212> TYPE: PRT <213> ORGANISM:	20	staqna	lis							
		-								

<400> SEQUENCE: 23 Met Thr Thr Asn Gly Glu Ile Leu Pro Val Gly Glu Glu Glu Glu 10 Glu Leu Gly Glu Asp Ala Leu Leu Arg Lys Gln Ile Asp Cys Asn Thr Asn Glu Ser Leu Glu Ser Thr Arg Arg Met Leu Ser Leu Cys Glu Glu Ser Lys Glu Ala Gly Ile Lys Thr Leu Val Met Leu Asp Glu Gln Gly Glu Gln Leu Asp Arg Ile Glu Glu Gly Met Gly Gln Ile Asn Gln Asp Met Arg Asp Ala Glu Lys Asn Leu Glu Gly Leu Glu Lys Cys Cys Gly Leu Cys Val Leu Pro Trp Lys Arg Ser Lys Asn Phe Glu Lys Gly Ser 100 \$100\$Asp Tyr Asn Lys Thr Trp Lys Ala Ser Glu Asp Gly Lys Ile Asn Thr Asn Gly Pro Arg Leu Val Val Asp Gln Gly Asn Gly Ser Gly Pro Thr 135 Gly Gly Tyr Ile Thr Arg Ile Thr Asn Asp Ala Arg Glu Asp Glu Met 150 155 Glu Gln Asn Ile Gly Glu Val Ala Gly Met Val Ser Asn Leu Arg Asn Met Ala Val Asp Met Gly Asn Glu Ile Glu Ser Gln Asn Lys Gln Leu 185 Asp Arg Ile Asn Gln Lys Gly Gly Ser Leu Asn Val Arg Val Asp Glu 200 Ala Asn Lys Arg Ala Asn Arg Ile Leu Arg Lys Gln <210> SEQ ID NO 24 <211> LENGTH: 207 <212> TYPE: PRT <213> ORGANISM: Caenorhabditis elegans <400> SEQUENCE: 24 Met Ser Gly Asp Asp Ile Pro Glu Gly Leu Glu Ala Ile Asn Leu Lys Met Asn Ala Thr Thr Asp Asp Ser Leu Glu Ser Thr Arg Arg Met Leu Ala Leu Cys Glu Glu Ser Lys Glu Ala Gly Ile Lys Thr Leu Val\$35\$Met Leu Asp Asp Gln Gly Glu Gln Leu Glu Arg Cys Glu Gly Ala Leu $50 \hspace{1cm} 60$ Asp Thr Ile Asn Gln Asp Met Lys Glu Ala Glu Asp His Leu Lys Gly Met Glu Lys Cys Cys Gly Leu Cys Val Leu Pro Trp Asn Lys Thr Asp Asp Phe Glu Lys Thr Glu Phe Ala Lys Ala Trp Lys Lys Asp Asp Gly Gly Val Ile Ser Asp Gln Pro Arg Ile Thr Val Gly Asp Ser Ser 120 Met Gly Pro Gln Gly Gly Tyr Ile Thr Lys Ile Thr Asn Asp Ala Arg

Glu Asp Glu Met Asp Glu Asn Val Gln Gln Val Ser Thr Met Val Gly 150 155 Asn Leu Arg Asn Met Ala Ile Asp Met Ser Thr Glu Val Ser Asn Gln Asn Arg Gln Leu Asp Arg Ile His Asp Lys Ala Gln Ser Asn Glu Val 185 Arg Val Glu Ser Ala Asn Lys Arg Ala Lys Asn Leu Ile Thr Lys <210> SEQ ID NO 25 <211> LENGTH: 808 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 25 Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Gly Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly 65 70 75 80Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg 105 Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala 120 Pro Ser Ser Gly Asp Asp Glu Asp Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp 150 155 Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr 230 Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu 265 Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro 295 300 Tyr Val Thr Val Leu Lys Ser Trp Ile Ser Glu Ser Val Glu Ala Asp 310 315

Val	Arg	Leu	Arg	Leu 325	Ala	Asn	Val	Ser	Glu 330	Arg	Asp	Gly	Gly	Glu 335	Tyr
Leu	Cys	Arg	Ala 340	Thr	Asn	Phe	Ile	Gly 345	Val	Ala	Glu	Lys	Ala 350	Phe	Trp
Leu	Ser	Val 355	His	Gly	Pro	Arg	Ala 360	Ala	Glu	Glu	Glu	Leu 365	Val	Glu	Ala
Asp	Glu 370	Ala	Gly	Ser	Val	Tyr 375	Ala	Gly	Ile	Leu	Ser 380	Tyr	Gly	Val	Gly
Phe 385	Phe	Leu	Phe	Ile	Leu 390	Val	Val	Ala	Ala	Val 395	Thr	Leu	Сув	Arg	Leu 400
Arg	Ser	Pro	Pro	Lys 405	Lys	Gly	Leu	Gly	Ser 410	Pro	Thr	Val	His	Lys 415	Ile
Ser	Arg	Phe	Pro 420	Leu	Lys	Arg	Gln	Val 425	Ser	Leu	Glu	Ser	Asn 430	Ala	Ser
Met	Ser	Ser 435	Asn	Thr	Pro	Leu	Val 440	Arg	Ile	Ala	Arg	Leu 445	Ser	Ser	Gly
Glu	Gly 450	Pro	Thr	Leu	Ala	Asn 455	Val	Ser	Glu	Leu	Glu 460	Leu	Pro	Ala	Asp
Pro 465	ГЛа	Trp	Glu	Leu	Ser 470	Arg	Ala	Arg	Leu	Thr 475	Leu	Gly	ГЛа	Pro	Leu 480
Gly	Glu	Gly	CÀa	Phe 485	Gly	Gln	Val	Val	Met 490	Ala	Glu	Ala	Ile	Gly 495	Ile
Asp	ГЛа	Asp	Arg 500	Ala	Ala	ГЛа	Pro	Val 505	Thr	Val	Ala	Val	Lys 510	Met	Leu
ràa	Asp	Asp 515	Ala	Thr	Asp	Lys	Asp 520	Leu	Ser	Asp	Leu	Val 525	Ser	Glu	Met
Glu	Met 530	Met	ГÀз	Met	Ile	Gly 535	Lys	His	ГÀв	Asn	Ile 540	Ile	Asn	Leu	Leu
Gly 545	Ala	Сла	Thr	Gln	Gly 550	Gly	Pro	Leu	Tyr	Val 555	Leu	Val	Glu	Tyr	Ala 560
Ala	Lys	Gly	Asn	Leu 565	Arg	Glu	Phe	Leu	Arg 570	Ala	Arg	Arg	Pro	Pro 575	Gly
Leu	Asp	Tyr	Ser 580	Phe	Asp	Thr	Cha	Lys 585	Pro	Pro	Glu	Glu	Gln 590	Leu	Thr
Phe	Lys	Asp 595	Leu	Val	Ser	CAa	Ala 600	Tyr	Gln	Val	Ala	Arg 605	Gly	Met	Glu
Tyr	Leu 610	Ala	Ser	Gln	ràa	615 615	Ile	His	Arg	Asp	Leu 620	Ala	Ala	Arg	Asn
Val 625	Leu	Val	Thr	Glu	Asp	Asn	Val	Met	Lys	Ile 635	Ala	Asp	Phe	Gly	Leu 640
Ala	Arg	Asp	Val	His 645	Asn	Leu	Asp	Tyr	Tyr 650	Lys	Lys	Thr	Thr	Asn 655	Gly
Arg	Leu	Pro	Val 660	Lys	Trp	Met	Ala	Pro 665	Glu	Ala	Leu	Phe	Asp 670	Arg	Val
Tyr	Thr	His 675	Gln	Ser	Asp	Val	Trp 680	Ser	Phe	Gly	Val	Leu 685	Leu	Trp	Glu
Ile	Phe 690	Thr	Leu	Gly	Gly	Ser 695	Pro	Tyr	Pro	Gly	Ile 700	Pro	Val	Glu	Glu
Leu 705	Phe	Lys	Leu	Leu	Lys 710	Glu	Gly	His	Arg	Met 715	Asp	Lys	Pro	Ala	Asn 720
СЛа	Thr	His	Asp	Leu 725	Tyr	Met	Ile	Met	Arg 730	Glu	СЛа	Trp	His	Ala 735	Ala

-continued

Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg Val Leu Thr Val Thr Ser Thr Asp Glu Tyr Leu Asp Leu Ser Ala Pro Phe Glu Gln Tyr Ser Pro Gly Gly Gln Asp Thr Pro Ser Ser Ser Ser Gly Asp Asp Ser Val Phe Ala His Asp Leu Leu Pro Pro Ala Pro Pro Ser Ser Gly Gly Ser Arg Thr <210> SEQ ID NO 26 <211> LENGTH: 806 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 26 Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val 25 Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Gly Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly 65 70 75 80 Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val 90 Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg 105 Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr 135 Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly 215 Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln 250 Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu 265 Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu 280 Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro 295

Tyr 305	Val	Thr	Val	Leu	Lys 310	Thr	Ala	Gly	Ala	Asn 315	Thr	Thr	Asp	Lys	Glu 320
Leu	Glu	Val	Leu	Ser 325	Leu	His	Asn	Val	Thr 330	Phe	Glu	Asp	Ala	Gly 335	Glu
Tyr	Thr	Cys	Leu 340	Ala	Gly	Asn	Ser	Ile 345	Gly	Phe	Ser	His	His 350	Ser	Ala
Trp	Leu	Val 355	Val	Leu	Pro	Ala	Glu 360	Glu	Glu	Leu	Val	Glu 365	Ala	Asp	Glu
Ala	Gly 370	Ser	Val	Tyr	Ala	Gly 375	Ile	Leu	Ser	Tyr	Gly 380	Val	Gly	Phe	Phe
Leu 385	Phe	Ile	Leu	Val	Val 390	Ala	Ala	Val	Thr	Leu 395	CÀa	Arg	Leu	Arg	Ser 400
Pro	Pro	Lys	Lys	Gly 405	Leu	Gly	Ser	Pro	Thr 410	Val	His	ГÀа	Ile	Ser 415	Arg
Phe	Pro	Leu	Lys 420	Arg	Gln	Val	Ser	Leu 425	Glu	Ser	Asn	Ala	Ser 430	Met	Ser
Ser	Asn	Thr 435	Pro	Leu	Val	Arg	Ile 440	Ala	Arg	Leu	Ser	Ser 445	Gly	Glu	Gly
Pro	Thr 450	Leu	Ala	Asn	Val	Ser 455	Glu	Leu	Glu	Leu	Pro 460	Ala	Asp	Pro	ГЛа
Trp 465	Glu	Leu	Ser	Arg	Ala 470	Arg	Leu	Thr	Leu	Gly 475	Lys	Pro	Leu	Gly	Glu 480
Gly	Cys	Phe	Gly	Gln 485	Val	Val	Met	Ala	Glu 490	Ala	Ile	Gly	Ile	Asp 495	ГЛа
Asp	Arg	Ala	Ala 500	Lys	Pro	Val	Thr	Val 505	Ala	Val	Lys	Met	Leu 510	Lys	Asp
Asp	Ala	Thr 515	Asp	ГÀЗ	Asp	Leu	Ser 520	Asp	Leu	Val	Ser	Glu 525	Met	Glu	Met
Met	Lys 530	Met	Ile	Gly	ГÀа	His 535	Lys	Asn	Ile	Ile	Asn 540	Leu	Leu	Gly	Ala
Сув 545	Thr	Gln	Gly	Gly	Pro 550	Leu	Tyr	Val	Leu	Val 555	Glu	Tyr	Ala	Ala	560 Lys
Gly	Asn	Leu	Arg	Glu 565	Phe	Leu	Arg	Ala	Arg 570	Arg	Pro	Pro	Gly	Leu 575	Asp
Tyr	Ser	Phe	580	Thr	CAa	Lys	Pro	Pro 585	Glu	Glu	Gln	Leu	Thr 590	Phe	Lys
Asp	Leu	Val 595	Ser	CÀa	Ala	Tyr	Gln 600	Val	Ala	Arg	Gly	Met 605	Glu	Tyr	Leu
Ala	Ser 610	Gln	Lys	CÀa	Ile	His 615	Arg	Asp	Leu	Ala	Ala 620	Arg	Asn	Val	Leu
Val 625	Thr	Glu	Aap	Asn	Val 630	Met	Lys	Ile	Ala	Asp 635	Phe	Gly	Leu	Ala	Arg 640
Asp	Val	His	Asn	Leu 645	Asp	Tyr	Tyr	Lys	650	Thr	Thr	Asn	Gly	Arg 655	Leu
Pro	Val	Lys	Trp 660	Met	Ala	Pro	Glu	Ala 665	Leu	Phe	Asp	Arg	Val 670	Tyr	Thr
His	Gln	Ser 675	Asp	Val	Trp	Ser	Phe 680	Gly	Val	Leu	Leu	Trp 685	Glu	Ile	Phe
Thr	Leu 690	Gly	Gly	Ser	Pro	Tyr 695	Pro	Gly	Ile	Pro	Val 700	Glu	Glu	Leu	Phe
Lys 705	Leu	Leu	Lys	Glu	Gly 710	His	Arg	Met	Asp	Lys 715	Pro	Ala	Asn	Cya	Thr 720

His Asp Leu Tyr Met Ile Met Arg Glu Cys Trp His Ala Ala Pro Ser 725 Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg Val Leu Thr Val Thr Ser Thr Asp Glu Tyr Leu Asp Leu Ser Ala Pro Phe Glu Gln Tyr Ser Pro Gly Gly Gln Asp Thr Pro Ser Ser Ser Ser Gly Asp Asp Ser Val Phe Ala His Asp Leu Leu Pro Pro Ala Pro Pro Ser Ser Gly Gly Ser Arg Thr <210> SEQ ID NO 27 <211> LENGTH: 694 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 27 Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile 10 Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val 25 Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Gly Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly 65 $$ 70 $$ 75 $$ 80 Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly 215 Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr 235 Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu 265 Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu 280

Гув	His 290	Val	Glu	Val	Asn	Gly 295	Ser	Lys	Val	Gly	Pro 300	Asp	Gly	Thr	Pro
Tyr 305	Val	Thr	Val	Leu	Lys 310	Val	Ser	Leu	Glu	Ser 315	Asn	Ala	Ser	Met	Ser 320
Ser	Asn	Thr	Pro	Leu 325	Val	Arg	Ile	Ala	Arg 330	Leu	Ser	Ser	Gly	Glu 335	Gly
Pro	Thr	Leu	Ala 340	Asn	Val	Ser	Glu	Leu 345	Glu	Leu	Pro	Ala	350	Pro	Lys
Trp	Glu	Leu 355	Ser	Arg	Ala	Arg	Leu 360	Thr	Leu	Gly	Lys	Pro 365	Leu	Gly	Glu
Gly	Суя 370	Phe	Gly	Gln	Val	Val 375	Met	Ala	Glu	Ala	Ile 380	Gly	Ile	Asp	Lys
Asp 385	Arg	Ala	Ala	Lys	Pro 390	Val	Thr	Val	Ala	Val 395	Lys	Met	Leu	Lys	Asp 400
Asp	Ala	Thr	Asp	Lys 405	Asp	Leu	Ser	Asp	Leu 410	Val	Ser	Glu	Met	Glu 415	Met
Met	ГЛа	Met	Ile 420	Gly	ГÀа	His	ГЛа	Asn 425	Ile	Ile	Asn	Leu	Leu 430	Gly	Ala
CÀa	Thr	Gln 435	Gly	Gly	Pro	Leu	Tyr 440	Val	Leu	Val	Glu	Tyr 445	Ala	Ala	Lys
Gly	Asn 450	Leu	Arg	Glu	Phe	Leu 455	Arg	Ala	Arg	Arg	Pro 460	Pro	Gly	Leu	Asp
Tyr 465	Ser	Phe	Asp	Thr	Cys 470	ГÀа	Pro	Pro	Glu	Glu 475	Gln	Leu	Thr	Phe	Lys 480
Asp	Leu	Val	Ser	Сув 485	Ala	Tyr	Gln	Val	Ala 490	Arg	Gly	Met	Glu	Tyr 495	Leu
Ala	Ser	Gln	Lys 500	CAa	Ile	His	Arg	Asp 505	Leu	Ala	Ala	Arg	Asn 510	Val	Leu
Val	Thr	Glu 515	Asp	Asn	Val	Met	Lys 520	Ile	Ala	Asp	Phe	Gly 525	Leu	Ala	Arg
Asp	Val 530	His	Asn	Leu	Asp	Tyr 535	Tyr	Lys	ГÀа	Thr	Thr 540	Asn	Gly	Arg	Leu
Pro 545	Val	Lys	Trp	Met	Ala 550	Pro	Glu	Ala	Leu	Phe 555	Asp	Arg	Val	Tyr	Thr 560
His	Gln	Ser	Asp	Val 565	Trp	Ser	Phe	Gly	Val 570	Leu	Leu	Trp	Glu	Ile 575	Phe
Thr	Leu	Gly	Gly 580	Ser	Pro	Tyr	Pro	Gly 585	Ile	Pro	Val	Glu	Glu 590	Leu	Phe
ГÀа	Leu	Leu 595	ГÀа	Glu	Gly	His	Arg 600	Met	Asp	ГÀа	Pro	Ala 605	Asn	CÀa	Thr
His	Asp 610	Leu	Tyr	Met	Ile	Met 615	Arg	Glu	CAa	Trp	His 620	Ala	Ala	Pro	Ser
Gln 625	Arg	Pro	Thr	Phe	630 Fås	Gln	Leu	Val	Glu	Asp 635	Leu	Asp	Arg	Val	Leu 640
Thr	Val	Thr	Ser	Thr 645	Asp	Glu	Tyr	Leu	Asp 650	Leu	Ser	Ala	Pro	Phe 655	Glu
Gln	Tyr	Ser	Pro 660	Gly	Gly	Gln	Asp	Thr 665	Pro	Ser	Ser	Ser	Ser 670	Ser	Gly
Asp	Asp	Ser 675	Val	Phe	Ala	His	Asp 680	Leu	Leu	Pro	Pro	Ala 685	Pro	Pro	Ser
Ser	Gly 690	Gly	Ser	Arg	Thr										

<211	L> LE	EQ II ENGTH TPE:	I: 60												
<213	3 > OF	RGANI	SM:		sap	oiens	3								
< 400)> SI	EQUEN	ICE:	28											
Ala 1	Gln	Arg	Arg	Lys 5	Glu	Arg	Glu	Glu	Leu 10	Ala	Gln	Gln	Tyr	Glu 15	Ala
Ile	Leu	Arg	Glu 20	CAa	Gly	His	Gly	Arg 25	Phe	Gln	Trp	Thr	Leu 30	Tyr	Phe
Val	Leu	Gly 35	Leu	Ala	Leu	Met	Ala 40	Asp	Gly	Val	Glu	Val 45	Phe	Val	Val
Gly	Phe 50	Val	Leu	Pro	Ser	Ala 55	Glu	Lys	Asp	Met	60 CÀa	Leu	Ser	Asp	Ser
Asn 65	Lys	Gly	Met	Leu	Gly 70	Leu	Ile	Val	Tyr	Leu 75	Gly	Met	Met	Val	Gly 80
Ala	Phe	Leu	Trp	Gly 85	Gly	Leu	Ala	Asp	Arg 90	Leu	Gly	Arg	Arg	Gln 95	Cys
Leu	Leu	Ile	Ser 100	Leu	Ser	Val	Asn	Ser 105	Val	Phe	Ala	Phe	Phe 110	Ser	Ser
Phe	Val	Gln 115	Gly	Tyr	Gly	Thr	Phe 120	Leu	Phe	Càa	Arg	Leu 125	Leu	Ser	Gly
Val	Gly 130	Ile	Gly	Gly	Ser	Ile 135	Pro	Ile	Val	Phe	Ser 140	Tyr	Phe	Ser	Glu
Phe 145	Leu	Ala	Gln	Glu	Lys 150	Arg	Gly	Glu	His	Leu 155	Ser	Trp	Leu	Cya	Met 160
Phe	Trp	Met	Ile	Gly 165	Gly	Val	Tyr	Ala	Ala 170	Ala	Met	Ala	Trp	Ala 175	Ile
Ile	Pro	His	Tyr 180	Gly	Trp	Ser	Phe	Gln 185	Met	Gly	Ser	Ala	Tyr 190	Gln	Phe
His	Ser	Trp 195	Arg	Val	Phe	Val	Leu 200	Val	Cys	Ala	Phe	Pro 205	Ser	Val	Phe
Ala	Ile 210	Gly	Ala	Leu	Thr	Thr 215	Gln	Pro	Glu	Ser	Pro 220	Arg	Phe	Phe	Leu
Glu 225	Asn	Gly	Lys	His	Asp 230	Glu	Ala	Trp	Met	Val 235	Leu	Lys	Gln	Val	His 240
Asp	Thr	Asn	Met	Arg 245	Ala	Lys	Gly	His	Pro 250	Glu	Arg	Val	Phe	Ser 255	Val
Thr	His	Ile	Lys 260	Thr	Ile	His	Gln	Glu 265	Asp	Glu	Leu	Ile	Glu 270	Ile	Gln
Ser	Asp	Thr 275	Gly	Thr	Trp	Tyr	Gln 280	Arg	Trp	Gly	Val	Arg 285	Ala	Leu	Ser
Leu	Gly 290	Gly	Gln	Val	Trp	Gly 295	Asn	Phe	Leu	Ser	300 CAa	Phe	Gly	Pro	Glu
Tyr 305	Arg	Arg	Ile	Thr	Leu 310	Met	Met	Met	Gly	Val 315	Trp	Phe	Thr	Met	Ser 320
Phe	Ser	Tyr	Tyr	Gly 325	Leu	Thr	Val	Trp	Phe 330	Pro	Asp	Met	Ile	Arg 335	His
Leu	Gln	Ala	Val 340	Asp	Tyr	Ala	Ser	Arg 345	Thr	Lys	Val	Phe	Pro 350	Gly	Glu
Arg	Val	Glu 355	His	Val	Thr	Phe	Asn 360	Phe	Thr	Leu	Glu	Asn 365	Gln	Ile	His
Arg	Gly 370	Gly	Gln	Tyr	Phe	Asn 375	Asp	Lys	Phe	Ile	Gly 380	Leu	Arg	Leu	Lys

Ser Val Ser Phe Glu Asp Ser Leu Phe Glu Glu Cys Tyr Phe Glu Asp

395 Val Thr Ser Ser Asn Thr Phe Phe Arg Asn Cys Thr Phe Ile Asn Thr 410 Val Phe Tyr Asn Thr Asp Leu Phe Glu Tyr Lys Phe Val Asn Ser Arg Leu Ile Asn Ser Thr Phe Leu His Asn Lys Glu Gly Cys Pro Leu Asp Val Thr Gly Thr Gly Glu Gly Ala Tyr Met Val Tyr Phe Val Ser Phe Leu Gly Thr Leu Ala Val Leu Pro Gly Asn Ile Val Ser Ala Leu Leu Met Asp Lys Ile Gly Arg Leu Arg Met Leu Ala Gly Ser Ser Val Met Ser Cys Val Ser Cys Phe Phe Leu Ser Phe Gly Asn Ser Glu Ser Ala 505 Met Ile Ala Leu Leu Cys Leu Phe Gly Gly Val Ser Ile Ala Ser Trp 520 Asn Ala Leu Asp Val Leu Thr Val Glu Leu Tyr Pro Ser Asp Lys Arg 535 Thr Thr Ala Phe Gly Phe Leu Asn Ala Leu Cys Lys Leu Ala Ala Val 550 Leu Gly Ile Ser Ile Phe Thr Ser Phe Val Gly Ile Thr Lys Ala Ala 570 Pro Ile Leu Phe Ala Ser Ala Ala Leu Ala Leu Gly Ser Ser Leu Ala 580 585 Leu Lys Leu Pro Glu Thr Arg Gly Gln Val Leu Gln 595 <210> SEQ ID NO 29 <211> LENGTH: 683 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 29 Met Asp Asp Tyr Lys Tyr Gln Asp Asn Tyr Gly Gly Tyr Ala Pro Ser Asp Gly Tyr Tyr Arg Gly Asn Glu Ser Asn Pro Glu Glu Asp Ala Gln Ser Asp Val Thr Glu Gly His Asp Glu Glu Asp Glu Ile Tyr Glu Gly Glu Tyr Gln Gly Ile Pro His Pro Asp Asp Val Lys Ala Lys Gln Ala Lys Met Ala Pro Ser Arg Met Asp Ser Leu Arg Gly Gln Thr Asp Leu 65 70 75 80 Met Ala Glu Arg Leu Glu Asp Glu Glu Gln Leu Ala His Gln Tyr Glu Thr Ile Met Asp Glu Cys Gly His Gly Arg Phe Gln Trp Ile Leu Phe 105 Phe Val Leu Gly Leu Ala Leu Met Ala Asp Gly Val Glu Val Phe Val Val Ser Phe Ala Leu Pro Ser Ala Glu Lys Asp Met Cys Leu Ser Ser Ser Lys Lys Gly Met Leu Gly Met Ile Val Tyr Leu Gly Met Met Ala

145					150					155					160
Gly	Ala	Phe	Ile	Leu 165	Gly	Gly	Leu	Ala	Asp 170	Lys	Leu	Gly	Arg	Lys 175	Arg
Val	Leu	Ser	Met 180	Ser	Leu	Ala	Val	Asn 185	Ala	Ser	Phe	Ala	Ser 190	Leu	Ser
Ser	Phe	Val 195	Gln	Gly	Tyr	Gly	Ala 200	Phe	Leu	Phe	Cys	Arg 205	Leu	Ile	Ser
Gly	Ile 210	Gly	Ile	Gly	Gly	Ala 215	Leu	Pro	Ile	Val	Phe 220	Ala	Tyr	Phe	Ser
Glu 225	Phe	Leu	Ser	Arg	Glu 230	ГЛа	Arg	Gly	Glu	His 235	Leu	Ser	Trp	Leu	Gly 240
Ile	Phe	Trp	Met	Thr 245	Gly	Gly	Leu	Tyr	Ala 250	Ser	Ala	Met	Ala	Trp 255	Ser
Ile	Ile	Pro	His 260	Tyr	Gly	Trp	Gly	Phe 265	Ser	Met	Gly	Thr	Asn 270	Tyr	His
Phe	His	Ser 275	Trp	Arg	Val	Phe	Val 280	Ile	Val	Cys	Ala	Leu 285	Pro	Càa	Thr
Val	Ser 290	Met	Val	Ala	Leu	Lys 295	Phe	Met	Pro	Glu	Ser 300	Pro	Arg	Phe	Leu
Leu 305	Glu	Met	Gly	ГÀв	His 310	Asp	Glu	Ala	Trp	Met 315	Ile	Leu	Lys	Gln	Val 320
His	Asp	Thr	Asn	Met 325	Arg	Ala	Lys	Gly	Thr 330	Pro	Glu	ГÀв	Val	Phe 335	Thr
Val	Ser	Asn	Ile 340	ГÀв	Thr	Pro	Lys	Gln 345	Met	Asp	Glu	Phe	Ile 350	Glu	Ile
Gln	Ser	Ser 355	Thr	Gly	Thr	Trp	Tyr 360	Gln	Arg	Trp	Leu	Val 365	Arg	Phe	Lys
Thr	Ile 370	Phe	ГÀЗ	Gln	Val	Trp 375	Asp	Asn	Ala	Leu	Tyr 380	CAa	Val	Met	Gly
Pro 385	Tyr	Arg	Met	Asn	Thr 390	Leu	Ile	Leu	Ala	Val 395	Val	Trp	Phe	Ala	Met 400
Ala	Phe	Ser	Tyr	Tyr 405	Gly	Leu	Thr	Val	Trp 410	Phe	Pro	Asp	Met	Ile 415	Arg
Tyr	Phe	Gln	Asp 420	Glu	Glu	Tyr	Lys	Ser 425	Lys	Met	Lys	Val	Phe 430	Phe	Gly
Glu	His	Val 435	Tyr	Gly	Ala	Thr	Ile 440	Asn	Phe	Thr	Met	Glu 445	Asn	Gln	Ile
His	Gln 450	His	Gly	ГÀа	Leu	Val 455	Asn	Asp	ГÀа	Phe	Thr 460	Arg	Met	Tyr	Phe
Lys 465	His	Val	Leu	Phe	Glu 470	Asp	Thr	Phe	Phe	Asp 475	Glu	CAa	Tyr	Phe	Glu 480
Asp	Val	Thr	Ser	Thr 485	Asp	Thr	Tyr	Phe	Lys 490	Asn	CÀa	Thr	Ile	Glu 495	Ser
Thr	Ile	Phe	Tyr 500	Asn	Thr	Asp	Leu	Tyr 505	Glu	His	ГАв	Phe	Ile 510	Asn	Cys
Arg	Phe	Ile 515	Asn	Ser	Thr	Phe	Leu 520	Glu	Gln	Lys	Glu	Gly 525	Cys	His	Met
Asp	Leu 530	Glu	Gln	Asp	Asn	Asp 535	Phe	Leu	Ile	Tyr	Leu 540	Val	Ser	Phe	Leu
Gly 545	Ser	Leu	Ser	Val	Leu 550	Pro	Gly	Asn	Ile	Ile 555	Ser	Ala	Leu	Leu	Met 560
Asp	Arg	Ile	Gly	Arg 565	Leu	Lys	Met	Ile	Gly 570	Gly	Ser	Met	Leu	Ile 575	Ser

Ala Val Cys Cys Phe Phe Leu Phe Phe Gly Asn Ser Glu Ser Ala Met 585 Ile Gly Trp Gln Cys Leu Phe Cys Gly Thr Ser Ile Ala Ala Trp Asn Ala Leu Asp Val Ile Thr Val Glu Leu Tyr Pro Thr Asn Gln Arg Ala Thr Ala Phe Gly Ile Leu Asn Gly Leu Cys Lys Phe Gly Ala Ile Leu Gly Asn Thr Ile Phe Ala Ser Phe Val Gly Ile Thr Lys Val Val Pro Ile Leu Leu Ala Ala Ala Ser Leu Val Gly Gly Leu Ile Ala Leu Arg Leu Pro Glu Thr Arg Glu Gln Val Leu Ile <210> SEQ ID NO 30 <211> LENGTH: 727 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 30 Met Glu Asp Ser Tyr Lys Asp Arg Thr Ser Leu Met Lys Gly Ala Lys 10 Asp Ile Ala Arg Glu Val Lys Lys Gln Thr Val Lys Lys Val Asn Gln 25 Ala Val Asp Arg Ala Gln Asp Glu Tyr Thr Gln Arg Ser Tyr Ser Arg Phe Gln Asp Glu Glu Asp Asp Asp Tyr Tyr Pro Ala Gly Glu Thr Tyr Asn Gly Glu Ala Asn Asp Asp Glu Gly Ser Ser Glu Ala Thr Glu Gly His Asp Glu Asp Asp Glu Ile Tyr Glu Gly Glu Tyr Gln Gly Ile Pro Ser Met Asn Gln Ala Lys Asp Ser Ile Val Ser Val Gly Gln Pro Lys Gly Asp Glu Tyr Lys Asp Arg Arg Glu Leu Glu Ser Glu Arg Arg 120 Ala Asp Glu Glu Glu Leu Ala Gln Gln Tyr Glu Leu Ile Ile Gln Glu Cys Gly His Gly Arg Phe Gln Trp Ala Leu Phe Phe Val Leu Gly Met Ala Leu Met Ala Asp Gly Val Glu Val Phe Val Val Gly Phe Val Leu Pro Ser Ala Glu Thr Asp Leu Cys Ile Pro Asn Ser Gly Ser Gly Trp Leu Gly Ser Ile Val Tyr Leu Gly Met Met Val Gly Ala Phe Phe Trp 200 Gly Gly Leu Ala Asp Lys Val Gly Arg Lys Gln Ser Leu Leu Ile Cys 215 Met Ser Val Asn Gly Phe Phe Ala Phe Leu Ser Ser Phe Val Gln Gly Tyr Gly Phe Phe Leu Phe Cys Arg Leu Leu Ser Gly Phe Gly Ile Gly Gly Ala Ile Pro Thr Val Phe Ser Tyr Phe Ala Glu Val Leu Ala Arg

			260					265					270		
Glu	Lys	Arg 275	Gly	Glu	His	Leu	Ser 280	Trp	Leu	Cys	Met	Phe 285	Trp	Met	Ile
Gly	Gly 290	Ile	Tyr	Ala	Ser	Ala 295	Met	Ala	Trp	Ala	Ile 300	Ile	Pro	His	Tyr
Gly 305	Trp	Ser	Phe	Ser	Met 310	Gly	Ser	Ala	Tyr	Gln 315	Phe	His	Ser	Trp	Arg 320
Val	Phe	Val	Ile	Val 325	CAa	Ala	Leu	Pro	330	Val	Ser	Ser	Val	Val 335	Ala
Leu	Thr	Phe	Met 340	Pro	Glu	Ser	Pro	Arg 345	Phe	Leu	Leu	Glu	Val 350	Gly	Lys
His	Asp	Glu 355	Ala	Trp	Met	Ile	Leu 360	Lys	Leu	Ile	His	Asp 365	Thr	Asn	Met
Arg	Ala 370	Arg	Gly	Gln	Pro	Glu 375	Lys	Val	Phe	Thr	Val 380	Asn	Lys	Ile	Lys
Thr 385	Pro	Lys	Gln	Ile	Asp 390	Glu	Leu	Ile	Glu	Ile 395	Glu	Ser	Asp	Thr	Gly 400
Thr	Trp	Tyr	Arg	Arg 405	CAa	Phe	Val	Arg	Ile 410	Arg	Thr	Glu	Leu	Tyr 415	Gly
Ile	Trp	Leu	Thr 420	Phe	Met	Arg	CÀa	Phe 425	Asn	Tyr	Pro	Val	Arg 430	Asp	Asn
Thr	Ile	Lys 435	Leu	Thr	Ile	Val	Trp 440	Phe	Thr	Leu	Ser	Phe 445	Gly	Tyr	Tyr
Gly	Leu 450	Ser	Val	Trp	Phe	Pro 455	Asp	Val	Ile	ГЛа	Pro 460	Leu	Gln	Ser	Asp
Glu 465	Tyr	Ala	Leu	Leu	Thr 470	Arg	Asn	Val	Glu	Arg 475	Asp	ГÀа	Tyr	Ala	Asn 480
Phe	Thr	Ile	Asn	Phe 485	Thr	Met	Glu	Asn	Gln 490	Ile	His	Thr	Gly	Met 495	Glu
Tyr	Asp	Asn	Gly 500	Arg	Phe	Ile	Gly	Val 505	Lys	Phe	ГÀа	Ser	Val 510	Thr	Phe
Lys	Asp	Ser 515	Val	Phe	ràs	Ser	Сув 520	Thr	Phe	Glu	Asp	Val 525	Thr	Ser	Val
Asn	Thr 530	Tyr	Phe	ГÀЗ	Asn	Сув 535	Thr	Phe	Ile	Asp	Thr 540	Val	Phe	Asp	Asn
Thr 545	Asp	Phe	Glu	Pro	Tyr 550	ГÀЗ	Phe	Ile	Asp	Ser 555	Glu	Phe	ГÀЗ	Asn	Сув 560
Ser	Phe	Phe	His	Asn 565	ГÀа	Thr	Gly	Cys	Gln 570	Ile	Thr	Phe	Asp	Asp 575	Asp
Tyr	Ser	Ala	Tyr 580	Trp	Ile	Tyr	Phe	Val 585	Asn	Phe	Leu	Gly	Thr 590	Leu	Ala
Val	Leu	Pro 595	Gly	Asn	Ile	Val	Ser 600	Ala	Leu	Leu	Met	Asp 605	Arg	Ile	Gly
Arg	Leu 610	Thr	Met	Leu	Gly	Gly 615	Ser	Met	Val	Leu	Ser 620	Gly	Ile	Ser	CÀa
Phe 625	Phe	Leu	Trp	Phe	Gly 630	Thr	Ser	Glu	Ser	Met 635	Met	Ile	Gly	Met	Leu 640
Cys	Leu	Tyr	Asn	Gly 645	Leu	Thr	Ile	Ser	Ala 650	Trp	Asn	Ser	Leu	Asp 655	Val
Val	Thr	Val	Glu 660	Leu	Tyr	Pro	Thr	Asp 665	Arg	Arg	Ala	Thr	Gly 670	Phe	Gly
Phe	Leu	Asn 675	Ala	Leu	Сув	Lys	Ala 680	Ala	Ala	Val	Leu	Gly 685	Asn	Leu	Ile

Phe	Gly 690	Ser	Leu	Val	Ser	Ile 695	Thr	Lys	Ser	Ile	Pro 700	Ile	Leu	Leu	Ala
Ser 705		Val	Leu	Val	Cys 710		Gly	Leu	Val	Gly 715		CAa	Leu	Pro	Asp 720
	Arg	Thr	Gln	Val 725		Met				,13					720
01/	. GE	10 77	. 110												
<211 <212)> SE .> LE !> TY	ENGTH PE:	I: 74 PRT	12											
)> OF				sap	oiens	3								
		_			Arg	Asp	Arg	Ala	Ala 10	Phe	Ile	Arg	Gly	Ala 15	Lys
	Ile	Ala	Lys 20		Val	Lys	Lys	His 25		Ala	Lys	Lys	Val 30		Lys
Gly	Leu	Asp 35	Arg	Val	Gln	Asp	Glu 40	Tyr	Ser	Arg	Arg	Ser 45	Tyr	Ser	Arg
Phe	Glu 50	Glu	Glu	Asp	Asp	Asp 55	Asp	Asp	Phe	Pro	Ala 60	Pro	Ser	Asp	Gly
Tyr 65	Tyr	Arg	Gly	Glu	Gly 70	Thr	Gln	Asp	Glu	Glu 75	Glu	Gly	Gly	Ala	Ser 80
Ser	Asp	Ala	Thr	Glu 85	Gly	His	Asp	Glu	Asp 90	Asp	Glu	Ile	Tyr	Glu 95	Gly
Glu	Tyr	Gln	Asp 100	Ile	Pro	Arg	Ala	Glu 105	Ser	Gly	Gly	Lys	Gly 110	Glu	Arg
Met	Ala	Asp 115	Gly	Ala	Pro	Leu	Ala 120	Gly	Val	Arg	Gly	Gly 125	Leu	Ser	Asp
Gly	Glu 130	Gly	Pro	Pro	Gly	Gly 135	Arg	Gly	Glu	Ala	Gln 140	Arg	Arg	Lys	Glu
Arg 145	Glu	Glu	Leu	Ala	Gln 150	Gln	Tyr	Glu	Ala	Ile 155	Leu	Arg	Glu	Cys	Gly 160
His	Gly	Arg	Phe	Gln 165	Trp	Thr	Leu	Tyr	Phe 170	Val	Leu	Gly	Leu	Ala 175	Leu
Met	Ala	Asp	Gly 180	Val	Glu	Val	Phe	Val 185	Val	Gly	Phe	Val	Leu 190	Pro	Ser
Ala	Glu	Lys 195	Asp	Met	Cys	Leu	Ser 200	Asp	Ser	Asn	Lys	Gly 205	Met	Leu	Gly
Leu	Ile 210	Val	Tyr	Leu	Gly	Met 215	Met	Val	Gly	Ala	Phe 220	Leu	Trp	Gly	Gly
Leu 225	Ala	Asp	Arg	Leu	Gly 230	Arg	Arg	Gln	Cys	Leu 235	Leu	Ile	Ser	Leu	Ser 240
Val	Asn	Ser	Val	Phe 245	Ala	Phe	Phe	Ser	Ser 250	Phe	Val	Gln	Gly	Tyr 255	Gly
Thr	Phe	Leu	Phe 260	CAa	Arg	Leu	Leu	Ser 265	Gly	Val	Gly	Ile	Gly 270	Gly	Ser
Ile	Pro	Ile 275	Val	Phe	Ser	Tyr	Phe 280	Ser	Glu	Phe	Leu	Ala 285	Gln	Glu	Lys
Arg	Gly 290	Glu	His	Leu	Ser	Trp 295	Leu	Cys	Met	Phe	Trp 300	Met	Ile	Gly	Gly
Val 305	Tyr	Ala	Ala	Ala	Met 310	Ala	Trp	Ala	Ile	Ile 315	Pro	His	Tyr	Gly	Trp 320
Ser	Phe	Gln	Met	Gly	Ser	Ala	Tyr	Gln	Phe	His	Ser	Trp	Arg	Val	Phe

-continu	ıed
----------	-----

				325					330					335	
Val	Leu	Val	Суs 340	Ala	Phe	Pro	Ser	Val 345	Phe	Ala	Ile	Gly	Ala 350	Leu	Thr
Thr	Gln	Pro 355	Glu	Ser	Pro	Arg	Phe 360	Phe	Leu	Glu	Asn	Gly 365	Lys	His	Asp
Glu	Ala 370	Trp	Met	Val	Leu	Lys 375	Gln	Val	His	Asp	Thr 380	Asn	Met	Arg	Ala
Lys 385	Gly	His	Pro	Glu	Arg 390	Val	Phe	Ser	Val	Thr 395	His	Ile	Lys	Thr	Ile 400
His	Gln	Glu	Asp	Glu 405	Leu	Ile	Glu	Ile	Gln 410	Ser	Asp	Thr	Gly	Thr 415	Trp
Tyr	Gln	Arg	Trp 420	Gly	Val	Arg	Ala	Leu 425	Ser	Leu	Gly	Gly	Gln 430	Val	Trp
Gly	Asn	Phe 435	Leu	Ser	CÀa	Phe	Gly 440	Pro	Glu	Tyr	Arg	Arg 445	Ile	Thr	Leu
Met	Met 450	Met	Gly	Val	Trp	Phe 455	Thr	Met	Ser	Phe	Ser 460	Tyr	Tyr	Gly	Leu
Thr 465	Val	Trp	Phe	Pro	Asp 470	Met	Ile	Arg	His	Leu 475	Gln	Ala	Val	Asp	Tyr 480
Ala	Ser	Arg	Thr	Lys 485	Val	Phe	Pro	Gly	Glu 490	Arg	Val	Gly	His	Val 495	Thr
Phe	Asn	Phe	Thr 500	Leu	Glu	Asn	Gln	Ile 505	His	Arg	Gly	Gly	Gln 510	Tyr	Phe
Asn	Asp	Lys 515	Phe	Ile	Gly	Leu	Arg 520	Leu	ГЛа	Ser	Val	Ser 525	Phe	Glu	Asp
Ser	Leu 530	Phe	Glu	Glu	CAa	Tyr 535	Phe	Glu	Asp	Val	Thr 540	Ser	Ser	Asn	Thr
Phe 545	Phe	Arg	Asn	СЛа	Thr 550	Phe	Ile	Asn	Thr	Val 555	Phe	Tyr	Asn	Thr	Asp 560
Leu	Phe	Glu	Tyr	Lys 565	Phe	Val	Asn	Ser	Arg 570	Leu	Ile	Asn	Ser	Thr 575	Phe
Leu	His	Asn	Lys 580	Glu	Gly	CAa	Pro	Leu 585	Asp	Val	Thr	Gly	Thr 590	Gly	Glu
Gly	Ala	Tyr 595	Met	Val	Tyr	Phe	Val 600	Ser	Phe	Leu	Gly	Thr 605	Leu	Ala	Val
Leu	Pro 610	Gly	Asn	Ile	Val	Ser 615	Ala	Leu	Leu	Met	Asp 620	Lys	Ile	Gly	Arg
Leu 625	Arg	Met	Leu	Ala	Gly 630	Ser	Ser	Val	Met	Ser 635	Сув	Val	Ser	Сув	Phe 640
Phe	Leu	Ser	Phe	Gly 645	Asn	Ser	Glu	Ser	Ala 650	Met	Ile	Ala	Leu	Leu 655	Cya
Leu	Phe	Gly	Gly 660	Val	Ser	Ile	Ala	Ser 665	Trp	Asn	Ala	Leu	Asp 670	Val	Leu
Thr	Val	Glu 675	Leu	Tyr	Pro	Ser	Asp 680	Lys	Arg	Thr	Thr	Ala 685	Phe	Gly	Phe
Leu	Asn 690	Ala	Leu	Cys	Lys	Leu 695	Ala	Ala	Val	Leu	Gly 700	Ile	Ser	Ile	Phe
Thr 705	Ser	Phe	Val	Gly	Ile 710	Thr	Lys	Ala	Ala	Pro 715	Ile	Leu	Phe	Ala	Ser 720
Ala	Ala	Leu	Ala	Leu 725	Gly	Ser	Ser	Leu	Ala 730	Leu	ГÀа	Leu	Pro	Glu 735	Thr
Arg	Gly	Gln	Val	Leu	Gln										

Arg Gly Gln Val Leu Gln 740

```
<210> SEQ ID NO 32
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxyl-terminus
      at the P1 residue of the scissile bond of the {\tt BoNT/A}
<400> SEQUENCE: 32
Arg Ile Asp Glu Ala Asn Gln
<210> SEQ ID NO 33
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxyl-terminus
     at the P1 residue of the scissile bond of the BoNT/A
     cleavage site
<400> SEQUENCE: 33
Thr Arg Ile Asp Glu Ala Asn Gln
                5
<210> SEQ ID NO 34
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxyl-terminus
     at the P1 residue of the scissile bond of the BoNT/A
      cleavage site
<400> SEQUENCE: 34
Lys Thr Arg Ile Asp Glu Ala Asn Gln
<210> SEQ ID NO 35
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxyl-terminus
      at the P1 residue of the scissile bond of the BoNT/A
      cleavage site
<400> SEQUENCE: 35
Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln
<210> SEQ ID NO 36
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxyl-terminus
     at the P1 residue of the scissile bond of the BoNT/A
     cleavage site
<400> SEQUENCE: 36
Ser Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln
            5
<210> SEQ ID NO 37
<211> LENGTH: 12
```

```
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxyl-terminus
      at the P1 residue of the scissile bond of the {\tt BoNT/A}
      cleavage site
<400> SEQUENCE: 37
Asp Ser Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln
<210> SEQ ID NO 38
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxylated
      carboxyl-terminus at the P1 residue of the
     scissile bond of the BoNT/A cleavage site
<221> NAME/KEY: SITE
<222> LOCATION: (13) ... (13)
<223> OTHER INFORMATION: carboxylated glutamine
<400> SEQUENCE: 38
Cys Asp Ser Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln
<210> SEQ ID NO 39
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxyl-terminus
      at the P1 residue of the scissile bond of the {\tt BoNT/A}
      cleavage site
<400> SEQUENCE: 39
Arg Ile Asp Glu Ala Asn Lys
              5
<210> SEQ ID NO 40
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxyl-terminus
      at the P1 residue of the scissile bond of the BoNT/A
      cleavage site
<400> SEQUENCE: 40
Ala Arg Ile Asp Glu Ala Asn Lys
<210> SEQ ID NO 41
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxyl-terminus
      at the P1 residue of the scissile bond of the {\tt BoNT/A}
      cleavage site
<400> SEQUENCE: 41
Lys Ala Arg Ile Asp Glu Ala Asn Lys
<210> SEQ ID NO 42
<211> LENGTH: 10
<212> TYPE: PRT
```

```
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxyl-terminus
      at the P1 residue of the scissile bond of the {\tt BoNT/A}
<400> SEQUENCE: 42
Asn Lys Ala Arg Ile Asp Glu Ala Asn Lys
                5
<210> SEQ ID NO 43
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxyl-terminus
      at the P1 residue of the scissile bond of the BoNT/A
      cleavage site
<400> SEQUENCE: 43
Met Asn Lys Ala Arg Ile Asp Glu Ala Asn Lys
<210> SEQ ID NO 44
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxyl-terminus
      at the P1 residue of the scissile bond of the BoNT/A
      cleavage site
<400> SEQUENCE: 44
Asp Met Asn Lys Ala Arg Ile Asp Glu Ala Asn Lys
                5
<210> SEQ ID NO 45
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxylated
      carboxyl-terminus at the P1 residue of the \,
      scissile bond of the {\tt BoNT/A} cleavage site
<221> NAME/KEY: SITE
<222> LOCATION: (13) ... (13)
<223> OTHER INFORMATION: Carboxylated lysine
<400> SEQUENCE: 45
Cys Asp Met Asn Lys Ala Arg Ile Asp Glu Ala Asn Lys
<210> SEQ ID NO 46
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: SNAP-25 antigen
<400> SEQUENCE: 46
Cys Gly Gly Gly Arg Ile Asp Glu Ala Asn Gln
<210> SEQ ID NO 47
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: SNAP-25 antigen
```

```
<400> SEQUENCE: 47
Cys Gly Gly Arg Ile Asp Glu Ala Asn Lys
<210> SEQ ID NO 48
<211> LENGTH: 88
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: BirA-HisTag?-SNAP-25-134-197
<400> SEQUENCE: 48
Met Gly Gly Gly Leu Asn Asp Ile Phe Glu Ala Gln Lys Ile Glu Trp
His His His His His His Ile Arg Arg Val Thr Asn Asp Ala
Arg Glu Asn Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly Ile Ile
                40
Gly Asn Leu Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr
                     55
Gln Asn Arg Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys 65 70 75 80
Thr Arg Ile Asp Glu Ala Asn Gln
               85
<210> SEQ ID NO 49
<211> LENGTH: 97
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: BirA-HisTag?-SNAP-25-134-206
<400> SEQUENCE: 49
Met Gly Gly Leu Asn Asp Ile Phe Glu Ala Gln Lys Ile Glu Trp
         5
His His His His His His His Ile Arg Arg Val Thr Asn Asp Ala
                               25
Arg Glu Asn Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly Ile Ile
Gly Asn Leu Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr
Gln Asn Arg Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys
Thr Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser
Gly
<210> SEQ ID NO 50
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: BirA peptide
<400> SEQUENCE: 50
Gly Gly Gly Leu Asn Asp Ile Phe Glu Ala Gln Lys Ile Glu Trp His
1
                                   10
```

181 182

<211> LENGTH: 7570
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: pQBI-25/GFP-BoNT/A-LC expression construct.

<400> SEQUENCE: 51

gacggatcgg	gagatctccc	gatcccctat	ggtcgactct	cagtacaatc	tgctctgatg	60
ccgcatagtt	aagccagtat	ctgctccctg	cttgtgtgtt	ggaggtcgct	gagtagtgcg	120
cgagcaaaat	ttaagctaca	acaaggcaag	gcttgaccga	caattgcatg	aagaatctgc	180
ttagggttag	gcgttttgcg	ctgcttcgcc	tcgaggcctg	gccattgcat	acgttgtatc	240
catatcataa	tatgtacatt	tatattggct	catgtccaac	attaccgcca	tgttgacatt	300
gattattgac	tagttattaa	tagtaatcaa	ttacggggtc	attagttcat	agcccatata	360
tggagttccg	cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc	420
cccgcccatt	gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	480
attgacgtca	atgggtggag	tatttacggt	aaactgccca	cttggcagta	catcaagtgt	540
atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	600
atgcccagta	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	660
tcgctattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	720
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	780
aaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	840
gtaggcgtgt	acggtgggag	gtctatataa	gcagageteg	tttagtgaac	cgtcagatcg	900
cctggagacg	ccatccacgc	tgttttgacc	tccatagaag	acaccgggac	cgatccagcc	960
tccgcgggcc	accatggagg	gcccggttac	cggtaccgga	tccagatatc	tgggcggccg	1020
ctcagcaagc	ttcgcgaatt	cgggaggcgg	aggtggagct	agcaaaggag	aagaactctt	1080
cactggagtt	gtcccaattc	ttgttgaatt	agatggtgat	gttaacggcc	acaagttctc	1140
tgtcagtgga	gagggtgaag	gtgatgcaac	atacggaaaa	cttaccctga	agttcatctg	1200
cactactggc	aaactgcctg	ttccatggcc	aacactagtc	actactctgt	gctatggtgt	1260
tcaatgcttt	tcaagatacc	cggatcatat	gaaacggcat	gactttttca	agagtgccat	1320
gcccgaaggt	tatgtacagg	aaaggaccat	cttcttcaaa	gatgacggca	actacaagac	1380
acgtgctgaa	gtcaagtttg	aaggtgatac	ccttgttaat	agaatcgagt	taaaaggtat	1440
tgacttcaag	gaagatggca	acattetggg	acacaaattg	gaatacaact	ataactcaca	1500
caatgtatac	atcatggcag	acaaacaaaa	gaatggaatc	aaagtgaact	tcaagacccg	1560
ccacaacatt	gaagatggaa	gcgttcaact	agcagaccat	tatcaacaaa	atactccaat	1620
tggcgatggc	cctgtccttt	taccagacaa	ccattacctg	tccacacaat	ctgccctttc	1680
gaaagatccc	aacgaaaaga	gagaccacat	ggtccttctt	gagtttgtaa	cagctgctgg	1740
gattacacat	ggcatggatg	aactgtacaa	catcgatgga	ggcggaggtg	gaccttttgt	1800
taataaacaa	tttaattata	aagatcctgt	aaatggtgtt	gatattgctt	atataaaaat	1860
tccaaatgca	ggacaaatgc	aaccagtaaa	agcttttaaa	attcataata	aaatatgggt	1920
tattccagaa	agagatacat	ttacaaatcc	tgaagaagga	gatttaaatc	caccaccaga	1980
agcaaaacaa	gttccagttt	catattatga	ttcaacatat	ttaagtacag	ataatgaaaa	2040
agataattat	ttaaagggag	ttacaaaatt	atttgagaga	atttattcaa	ctgatcttgg	2100
aagaatgttg	ttaacatcaa	tagtaagggg	aataccattt	tggggtggaa	gtacaataga	2160

tacagaatta	aaagttattg	atactaattg	tattaatgtg	atacaaccag	atggtagtta	2220
tagatcagaa	gaacttaatc	tagtaataat	aggaccctca	gctgatatta	tacagtttga	2280
atgtaaaagc	tttggacatg	aagttttgaa	tettaegega	aatggttatg	gctctactca	2340
atacattaga	tttagcccag	attttacatt	tggttttgag	gagtcacttg	aagttgatac	2400
aaatcctctt	ttaggtgcag	gcaaatttgc	tacagatcca	gcagtaacat	tagcacatga	2460
acttatacat	gctggacata	gattatatgg	aatagcaatt	aatccaaata	gggtttttaa	2520
agtaaatact	aatgcctatt	atgaaatgag	tgggttagaa	gtaagctttg	aggaacttag	2580
aacatttggg	ggacatgatg	caaagtttat	agatagttta	caggaaaacg	aatttcgtct	2640
atattattat	aataagttta	aagatatagc	aagtacactt	aataaagcta	aatcaatagt	2700
aggtactact	gcttcattac	agtatatgaa	aaatgttttt	aaagagaaat	atctcctatc	2760
tgaagataca	tctggaaaat	tttcggtaga	taaattaaaa	tttgataagt	tatacaaaat	2820
gttaacagag	atttacacag	aggataattt	tgttaagttt	tttaaagtac	ttaacagaaa	2880
aacatatttg	aattttgata	aagccgtatt	taagataaat	atagtaccta	aggtaaatta	2940
cacaatatat	gatggattta	atttaagaaa	tacaaattta	gcagcaaact	ttaatggtca	3000
aaatacagaa	attaataata	tgaattttac	taaactaaaa	aattttactg	gattgtttga	3060
attttataag	ttgctatgtg	taagagggat	aatcacttcg	aaatgaacgc	gttggcccta	3120
ttctatagtg	tcacctaaat	gctagagctc	gctgatcagc	ctcgactgtg	ccttctagtt	3180
gccagccatc	tgttgtttgc	ccctcccccg	tgccttcctt	gaccctggaa	ggtgccactc	3240
ccactgtcct	ttcctaataa	aatgaggaaa	ttgcatcgca	ttgtctgagt	aggtgtcatt	3300
ctattctggg	gggtggggtg	gggcaggaca	gcaaggggga	ggattgggaa	gacaatagca	3360
ggcatgctgg	ggatgcggtg	ggctctatgg	cttctgaggc	ggaaagaacc	agctggggct	3420
ctagggggta	tececaegeg	ccctgtagcg	gcgcattaag	cgcggcgggt	gtggtggtta	3480
cgcgcagcgt	gaccgctaca	cttgccagcg	ccctagcgcc	cgctcctttc	gctttcttcc	3540
cttcctttct	cgccacgttc	gccggctttc	cccgtcaagc	tctaaatcgg	ggcatccctt	3600
tagggttccg	atttagtgct	ttacggcacc	tcgaccccaa	aaaacttgat	tagggtgatg	3660
gttcacgtag	tgggccatcg	ccctgataga	cggtttttcg	ccctttgacg	ttggagtcca	3720
cgttctttaa	tagtggactc	ttgttccaaa	ctggaacaac	actcaaccct	atctcggtct	3780
attcttttga	tttataaggg	attttgggga	tttcggccta	ttggttaaaa	aatgagctga	3840
tttaacaaaa	atttaacgcg	aattaattct	gtggaatgtg	tgtcagttag	ggtgtggaaa	3900
gtccccaggc	tccccaggca	ggcagaagta	tgcaaagcat	gcatctcaat	tagtcagcaa	3960
ccaggtgtgg	aaagtcccca	ggctccccag	caggcagaag	tatgcaaagc	atgcatctca	4020
attagtcagc	aaccatagtc	ccgcccctaa	ctccgcccat	cccgccccta	actccgccca	4080
gttccgccca	ttctccgccc	catggctgac	taatttttt	tatttatgca	gaggccgagg	4140
ccgcctctgc	ctctgagcta	ttccagaagt	agtgaggagg	cttttttgga	ggcctaggct	4200
tttgcaaaaa	gctcccggga	gcttgtatat	ccattttcgg	atctgatcaa	gagacaggat	4260
gaggatcgtt	tcgcatgatt	gaacaagatg	gattgcacgc	aggttctccg	geegettggg	4320
tggagagget	attcggctat	gactgggcac	aacagacaat	cggctgctct	gatgccgccg	4380
tgttccggct	gtcagcgcag	gggcgcccgg	ttctttttgt	caagaccgac	ctgtccggtg	4440
ccctgaatga	actgcaggac	gaggcagcgc	ggctatcgtg	gctggccacg	acgggcgttc	4500

cttgcgcagc tgtgctcgac	gttgtcactg	aagcgggaag	ggactggctg	ctattgggcg	4560
aagtgccggg gcaggatctc	ctgtcatctc	accttgctcc	tgccgagaaa	gtatccatca	4620
tggctgatgc aatgcggcgg	ctgcatacgc	ttgatccggc	tacctgccca	ttcgaccacc	4680
aagcgaaaca tcgcatcgag	cgagcacgta	ctcggatgga	agccggtctt	gtcgatcagg	4740
atgatctgga cgaagagcat	caggggctcg	cgccagccga	actgttcgcc	aggctcaagg	4800
cgcgcatgcc cgacggcgag	gatctcgtcg	tgacccatgg	cgatgcctgc	ttgccgaata	4860
tcatggtgga aaatggccgc	ttttctggat	tcatcgactg	tggccggctg	ggtgtggcgg	4920
accgctatca ggacatagcg	ttggctaccc	gtgatattgc	tgaagagctt	ggcggcgaat	4980
gggctgaccg cttcctcgtg	ctttacggta	tegeegetee	cgattcgcag	cgcatcgcct	5040
tctatcgcct tcttgacgag	ttcttctgag	cgggactctg	gggttcgaaa	tgaccgacca	5100
agcgacgccc aacctgccat	cacgagattt	cgattccacc	geegeettet	atgaaaggtt	5160
gggcttcgga atcgttttcc	gggacgccgg	ctggatgatc	ctccagcgcg	gggatctcat	5220
gctggagttc ttcgcccacc	ccaacttgtt	tattgcagct	tataatggtt	acaaataaag	5280
caatagcatc acaaatttca	caaataaagc	attttttca	ctgcattcta	gttgtggttt	5340
gtccaaactc atcaatgtat	cttatcatgt	ctgtataccg	tcgacctcta	gctagagctt	5400
ggcgtaatca tggtcatagc	tgtttcctgt	gtgaaattgt	tatccgctca	caattccaca	5460
caacatacga gccggaagca	taaagtgtaa	agcctggggt	gcctaatgag	tgagctaact	5520
cacattaatt gcgttgcgct	cactgcccgc	tttccagtcg	ggaaacctgt	cgtgccagct	5580
gcattaatga atcggccaac	gcgcggggag	aggcggtttg	cgtattgggc	gctcttccgc	5640
tteetegete aetgaetege	tgcgctcggt	cgttcggctg	cggcgagcgg	tatcagctca	5700
ctcaaaggcg gtaatacggt	tatccacaga	atcaggggat	aacgcaggaa	agaacatgtg	5760
agcaaaaggc cagcaaaagg	ccaggaaccg	taaaaaggcc	gegttgetgg	cgtttttcca	5820
taggeteege eeeeetgaeg	agcatcacaa	aaatcgacgc	tcaagtcaga	ggtggcgaaa	5880
cccgacagga ctataaagat	accaggcgtt	tececetgga	ageteeeteg	tgcgctctcc	5940
tgttccgacc ctgccgctta	ccggatacct	gteegeettt	ctcccttcgg	gaagcgtggc	6000
gctttctcaa tgctcacgct	gtaggtatct	cagttcggtg	taggtcgttc	gctccaagct	6060
gggctgtgtg cacgaacccc	ccgttcagcc	cgaccgctgc	gccttatccg	gtaactatcg	6120
tcttgagtcc aacccggtaa	gacacgactt	ategecaetg	gcagcagcca	ctggtaacag	6180
gattagcaga gcgaggtatg	taggcggtgc	tacagagttc	ttgaagtggt	ggcctaacta	6240
cggctacact agaaggacag	tatttggtat	ctgcgctctg	ctgaagccag	ttaccttcgg	6300
aaaaagagtt ggtagctctt	gatccggcaa	acaaaccacc	gctggtagcg	gtggttttt	6360
tgtttgcaag cagcagatta	cgcgcagaaa	aaaaggatct	caagaagatc	ctttgatctt	6420
ttctacgggg tctgacgctc	agtggaacga	aaactcacgt	taagggattt	tggtcatgag	6480
attatcaaaa aggatcttca	cctagatcct	tttaaattaa	aaatgaagtt	ttaaatcaat	6540
ctaaagtata tatgagtaaa	cttggtctga	cagttaccaa	tgcttaatca	gtgaggcacc	6600
tatctcagcg atctgtctat	ttcgttcatc	catagttgcc	tgactccccg	tcgtgtagat	6660
aactacgata cgggagggct	taccatctgg	ccccagtgct	gcaatgatac	cgcgagaccc	6720
acgeteaceg getecagatt	tatcagcaat	aaaccagcca	gccggaaggg	ccgagcgcag	6780
aagtggteet geaactttat	ccgcctccat	ccagtctatt	aattgttgcc	gggaagctag	6840
agtaagtagt tcgccagtta	atagtttgcg	caacgttgtt	gccattgcta	caggcatcgt	6900

ggtgtcacgc tcgtcgtttg gtatggcttc attcagctcc ggttcccaac gatcaaggc	g 6960
agttacatga tcccccatgt tgtgcaaaaa agcggttagc tccttcggtc ctccgatcg	7020
tgtcagaagt aagttggccg cagtgttatc actcatggtt atggcagcac tgcataatt	7080
tettactgte atgecateeg taagatgett ttetgtgaet ggtgagtaet caaccaagte	7140
attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa tacgggata	a 7200
taccgcgcca catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt cttcggggc	g 7260
aaaactctca aggatcttac cgctgttgag atccagttcg atgtaaccca ctcgtgcac	7320
caactgatet teageatett ttaettteae eagegtttet gggtgageaa aaacaggaa	g 7380
gcaaaaatgcc gcaaaaaagg gaataagggc gacacggaaa tgttgaatac tcatactct	7440
cctttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg gatacatat	7500
tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc acatttcccc gaaaagtgc	c 7560
acctgacgtc	7570
<210> SEQ ID NO 52	
<211> LENGTH: 682 <212> TYPE: PRT	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: GFP-BoNT/A light chain amino acid sequent </pre>	nce.
<400> SEQUENCE: 52	
Ala Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val	
1 5 10 15	
Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30	
Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45	
Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu 50 60	
Cys Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Arg 65 70 75 80	
His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95	
Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val	
Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile	
115 120 125	
Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140	
Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 145 150 155 160	
Ile Lys Val Asn Phe Lys Thr Arg His Asn Ile Glu Asp Gly Ser Val	
Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190	
Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205	
Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 220	
Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Asn Ile Asp 225 230 235 240	

Gly	Gly	Gly	Gly	Gly 245	Pro	Phe	Val	Asn	Lys 250	Gln	Phe	Asn	Tyr	Lys 255	Asp
Pro	Val	Asn	Gly 260	Val	Asp	Ile	Ala	Tyr 265	Ile	ГЛа	Ile	Pro	Asn 270	Ala	Gly
Gln	Met	Gln 275	Pro	Val	Lys	Ala	Phe 280	Lys	Ile	His	Asn	Lys 285	Ile	Trp	Val
Ile	Pro 290	Glu	Arg	Asp	Thr	Phe 295	Thr	Asn	Pro	Glu	Glu 300	Gly	Asp	Leu	Asn
Pro 305	Pro	Pro	Glu	Ala	Lys 310	Gln	Val	Pro	Val	Ser 315	Tyr	Tyr	Asp	Ser	Thr 320
Tyr	Leu	Ser	Thr	Asp 325	Asn	Glu	Lys	Asp	Asn 330	Tyr	Leu	ГЛа	Gly	Val 335	Thr
ГЛа	Leu	Phe	Glu 340	Arg	Ile	Tyr	Ser	Thr 345	Asp	Leu	Gly	Arg	Met 350	Leu	Leu
Thr	Ser	Ile 355	Val	Arg	Gly	Ile	Pro 360	Phe	Trp	Gly	Gly	Ser 365	Thr	Ile	Asp
Thr	Glu 370	Leu	Lys	Val	Ile	Asp 375	Thr	Asn	Сув	Ile	Asn 380	Val	Ile	Gln	Pro
Asp 385	Gly	Ser	Tyr	Arg	Ser 390	Glu	Glu	Leu	Asn	Leu 395	Val	Ile	Ile	Gly	Pro 400
Ser	Ala	Asp	Ile	Ile 405	Gln	Phe	Glu	Cya	Lys 410	Ser	Phe	Gly	His	Glu 415	Val
Leu	Asn	Leu	Thr 420	Arg	Asn	Gly	Tyr	Gly 425	Ser	Thr	Gln	Tyr	Ile 430	Arg	Phe
Ser	Pro	Asp 435	Phe	Thr	Phe	Gly	Phe 440	Glu	Glu	Ser	Leu	Glu 445	Val	Asp	Thr
Asn	Pro 450	Leu	Leu	Gly	Ala	Gly 455	Lys	Phe	Ala	Thr	Asp 460	Pro	Ala	Val	Thr
Leu 465	Ala	His	Glu	Leu	Ile 470	His	Ala	Gly	His	Arg 475	Leu	Tyr	Gly	Ile	Ala 480
				485	Val		-		490				-	495	
Met	Ser	Gly	Leu 500	Glu	Val	Ser	Phe	Glu 505	Glu	Leu	Arg	Thr	Phe 510	Gly	Gly
His	Asp	Ala 515	ГЛа	Phe	Ile	Asp	Ser 520	Leu	Gln	Glu	Asn	Glu 525	Phe	Arg	Leu
	530				Phe	535					540				
Lys 545	Ser	Ile	Val	Gly	Thr 550	Thr	Ala	Ser	Leu	Gln 555	Tyr	Met	Lys	Asn	Val 560
Phe	Lys	Glu	Lys	Tyr 565	Leu	Leu	Ser	Glu	Asp 570	Thr	Ser	Gly	Lys	Phe 575	Ser
Val	Aap	ГЛа	Leu 580	ГЛа	Phe	Aap	ГЛа	Leu 585	Tyr	ГÀв	Met	Leu	Thr 590	Glu	Ile
Tyr	Thr	Glu 595	Asp	Asn	Phe	Val	600 Fåa	Phe	Phe	ГÀа	Val	Leu 605	Asn	Arg	Lys
Thr	Tyr 610	Leu	Asn	Phe	Asp	Lys 615	Ala	Val	Phe	ГЛа	Ile 620	Asn	Ile	Val	Pro
Lys 625	Val	Asn	Tyr	Thr	Ile 630	Tyr	Asp	Gly	Phe	Asn 635	Leu	Arg	Asn	Thr	Asn 640
Leu	Ala	Ala	Asn	Phe 645	Asn	Gly	Gln	Asn	Thr 650	Glu	Ile	Asn	Asn	Met 655	Asn

-continued

Phe Thr Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu 665 Leu Cys Val Arg Gly Ile Ile Thr Ser Lys <210> SEQ ID NO 53 <211> LENGTH: 6259 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: pQBI-25/GFP expression construct. <400> SEQUENCE: 53 gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 60 ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180 ttagggttag gegttttgeg etgettegee tegaggeetg geeattgeat aegttgtate 240 catatcataa tatqtacatt tatattqqct catqtccaac attaccqcca tqttqacatt 300 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 360 420 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 480 attqacqtca atqqqtqqaq tatttacqqt aaactqccca cttqqcaqta catcaaqtqt 540 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 600 atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 660 tegetattae catggtgatg eggttttgge agtacateaa tgggegtgga tageggtttg 720 actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 780 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 840 gtaggcgtgt acggtgggag gtctatataa gcagagctcg tttagtgaac cgtcagatcg 900 cetggagaeg ceatecaege tgttttgaee tecatagaag acaeegggae egatecagee 960 teegegggee accatggagg geeeggttae eggtaeegga teeagatate tgggeggeeg 1020 1080 ctcagcaagc ttcgcgaatt cgggaggcgg aggtggagct agcaaaggag aagaactctt 1140 cactggagtt gtcccaattc ttgttgaatt agatggtgat gttaacggcc acaagttctc tgtcagtgga gagggtgaag gtgatgcaac atacggaaaa cttaccctga agttcatctg 1200 cactactggc aaactgcctg ttccatggcc aacactagtc actactctgt gctatggtgt 1260 tcaatgcttt tcaagatacc cggatcatat gaaacggcat gactttttca agagtgccat gcccgaaggt tatgtacagg aaaggaccat cttcttcaaa gatgacggca actacaagac acqtqctqaa qtcaaqtttq aaqqtqatac ccttqttaat aqaatcqaqt taaaaqqtat 1440 1500 tgacttcaag gaagatggca acattctggg acacaaattg gaatacaact ataactcaca caatgtatac atcatggcag acaaacaaaa gaatggaatc aaagtgaact tcaagacccg 1560 ccacaacatt gaagatggaa gcgttcaact agcagaccat tatcaacaaa atactccaat togcoatogo cototocttt taccaqacaa coattaccto tocacacaat ctoccottto 1680 gaaagatccc aacgaaaaga gagaccacat ggtccttctt gagtttgtaa cagctgctgg 1740 gattacacat ggcatggatg aactgtacaa catcgatgga ggcggaggtg gatgaacgcg 1800

ttggccctat tctatagtgt cacctaaatg ctagagctcg ctgatcagcc tcgactgtgc

cttctagttg ccagccatct gttgtttgcc cctccccgt gccttccttg accctggaag

1860

1920

gtgccactcc	cactgtcctt	tcctaataaa	atgaggaaat	tgcatcgcat	tgtctgagta	1980
ggtgtcattc	tattctgggg	ggtggggtgg	ggcaggacag	caagggggag	gattgggaag	2040
acaatagcag	gcatgctggg	gatgcggtgg	gctctatggc	ttctgaggcg	gaaagaacca	2100
gctggggctc	tagggggtat	ccccacgcgc	cctgtagcgg	cgcattaagc	geggegggtg	2160
tggtggttac	gcgcagcgtg	accgctacac	ttgccagcgc	cctagcgccc	gctcctttcg	2220
ctttcttccc	ttcctttctc	gccacgttcg	ccggctttcc	ccgtcaagct	ctaaatcggg	2280
gcatcccttt	agggttccga	tttagtgctt	tacggcacct	cgaccccaaa	aaacttgatt	2340
agggtgatgg	ttcacgtagt	gggccatcgc	cctgatagac	ggtttttcgc	cctttgacgt	2400
tggagtccac	gttctttaat	agtggactct	tgttccaaac	tggaacaaca	ctcaacccta	2460
tctcggtcta	ttcttttgat	ttataaggga	ttttggggat	ttcggcctat	tggttaaaaa	2520
atgagctgat	ttaacaaaaa	tttaacgcga	attaattctg	tggaatgtgt	gtcagttagg	2580
gtgtggaaag	tccccaggct	ccccaggcag	gcagaagtat	gcaaagcatg	catctcaatt	2640
agtcagcaac	caggtgtgga	aagtccccag	gctccccagc	aggcagaagt	atgcaaagca	2700
tgcatctcaa	ttagtcagca	accatagtcc	cgcccctaac	teegeecate	ccgcccctaa	2760
ctccgcccag	ttccgcccat	tctccgcccc	atggctgact	aattttttt	atttatgcag	2820
aggccgaggc	cgcctctgcc	tctgagctat	tccagaagta	gtgaggaggc	ttttttggag	2880
gcctaggctt	ttgcaaaaag	ctcccgggag	cttgtatatc	cattttcgga	tctgatcaag	2940
agacaggatg	aggatcgttt	cgcatgattg	aacaagatgg	attgcacgca	ggttctccgg	3000
ccgcttgggt	ggagaggcta	ttcggctatg	actgggcaca	acagacaatc	ggctgctctg	3060
atgccgccgt	gttccggctg	tcagcgcagg	ggcgcccggt	tctttttgtc	aagaccgacc	3120
tgtccggtgc	cctgaatgaa	ctgcaggacg	aggcagcgcg	gctatcgtgg	ctggccacga	3180
cgggcgttcc	ttgcgcagct	gtgctcgacg	ttgtcactga	agcgggaagg	gactggctgc	3240
tattgggcga	agtgccgggg	caggatetee	tgtcatctca	ccttgctcct	gccgagaaag	3300
tatccatcat	ggctgatgca	atgcggcggc	tgcatacgct	tgatccggct	acctgcccat	3360
tcgaccacca	agcgaaacat	cgcatcgagc	gagcacgtac	tcggatggaa	gccggtcttg	3420
tcgatcagga	tgatctggac	gaagagcatc	aggggctcgc	gccagccgaa	ctgttcgcca	3480
ggctcaaggc	gcgcatgccc	gacggcgagg	atctcgtcgt	gacccatggc	gatgcctgct	3540
tgccgaatat	catggtggaa	aatggccgct	tttctggatt	catcgactgt	ggccggctgg	3600
gtgtggcgga	ccgctatcag	gacatagcgt	tggctacccg	tgatattgct	gaagagcttg	3660
gcggcgaatg	ggctgaccgc	ttcctcgtgc	tttacggtat	cgccgctccc	gattcgcagc	3720
gcatcgcctt	ctatcgcctt	cttgacgagt	tettetgage	gggactctgg	ggttcgaaat	3780
gaccgaccaa	gcgacgccca	acctgccatc	acgagatttc	gattccaccg	ccgccttcta	3840
tgaaaggttg	ggcttcggaa	tegtttteeg	ggacgccggc	tggatgatcc	tccagcgcgg	3900
ggatctcatg	ctggagttct	tegeceacee	caacttgttt	attgcagctt	ataatggtta	3960
caaataaagc	aatagcatca	caaatttcac	aaataaagca	ttttttcac	tgcattctag	4020
ttgtggtttg	tccaaactca	tcaatgtatc	ttatcatgtc	tgtataccgt	cgacctctag	4080
ctagagcttg	gcgtaatcat	ggtcatagct	gtttcctgtg	tgaaattgtt	atccgctcac	4140
aattccacac	aacatacgag	ccggaagcat	aaagtgtaaa	gcctggggtg	cctaatgagt	4200
gagctaactc	acattaattg	cgttgcgctc	actgcccgct	ttccagtcgg	gaaacctgtc	4260

-continued

gtgccagctg	cattaatgaa	teggecaacg	cgcggggaga	ggcggtttgc	gtattgggcg	4320
ctcttccgct	tcctcgctca	ctgactcgct	gcgctcggtc	gttcggctgc	ggcgagcggt	4380
atcagctcac	tcaaaggcgg	taatacggtt	atccacagaa	tcaggggata	acgcaggaaa	4440
gaacatgtga	gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	cgttgctggc	4500
gtttttccat	aggeteegee	cccctgacga	gcatcacaaa	aatcgacgct	caagtcagag	4560
gtggcgaaac	ccgacaggac	tataaagata	ccaggcgttt	ccccctggaa	gctccctcgt	4620
gegeteteet	gttccgaccc	tgccgcttac	cggatacctg	teegeettte	teeetteggg	4680
aagcgtggcg	ctttctcaat	gctcacgctg	taggtatctc	agttcggtgt	aggtcgttcg	4740
ctccaagctg	ggctgtgtgc	acgaaccccc	cgttcagccc	gaccgctgcg	ccttatccgg	4800
taactatcgt	cttgagtcca	acccggtaag	acacgactta	tcgccactgg	cagcagccac	4860
tggtaacagg	attagcagag	cgaggtatgt	aggcggtgct	acagagttct	tgaagtggtg	4920
gcctaactac	ggctacacta	gaaggacagt	atttggtatc	tgcgctctgc	tgaagccagt	4980
taccttcgga	aaaagagttg	gtagctcttg	atccggcaaa	caaaccaccg	ctggtagcgg	5040
tggtttttt	gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatctc	aagaagatcc	5100
tttgatcttt	tctacggggt	ctgacgctca	gtggaacgaa	aactcacgtt	aagggatttt	5160
ggtcatgaga	ttatcaaaaa	ggatcttcac	ctagatcctt	ttaaattaaa	aatgaagttt	5220
taaatcaatc	taaagtatat	atgagtaaac	ttggtctgac	agttaccaat	gcttaatcag	5280
tgaggcacct	atctcagcga	tctgtctatt	tcgttcatcc	atagttgcct	gactccccgt	5340
cgtgtagata	actacgatac	gggagggctt	accatctggc	cccagtgctg	caatgatacc	5400
gcgagaccca	cgctcaccgg	ctccagattt	atcagcaata	aaccagccag	ccggaagggc	5460
cgagcgcaga	agtggtcctg	caactttatc	cgcctccatc	cagtctatta	attgttgccg	5520
ggaagctaga	gtaagtagtt	cgccagttaa	tagtttgcgc	aacgttgttg	ccattgctac	5580
aggcatcgtg	gtgtcacgct	cgtcgtttgg	tatggcttca	ttcagctccg	gttcccaacg	5640
atcaaggcga	gttacatgat	cccccatgtt	gtgcaaaaaa	gcggttagct	ccttcggtcc	5700
teegategtt	gtcagaagta	agttggccgc	agtgttatca	ctcatggtta	tggcagcact	5760
gcataattct	cttactgtca	tgccatccgt	aagatgcttt	tctgtgactg	gtgagtactc	5820
aaccaagtca	ttctgagaat	agtgtatgcg	gcgaccgagt	tgctcttgcc	cggcgtcaat	5880
acgggataat	accgcgccac	atagcagaac	tttaaaagtg	ctcatcattg	gaaaacgttc	5940
ttcggggcga	aaactctcaa	ggatcttacc	gctgttgaga	tccagttcga	tgtaacccac	6000
tegtgeacce	aactgatctt	cagcatcttt	tactttcacc	agcgtttctg	ggtgagcaaa	6060
aacaggaagg	caaaatgccg	caaaaaaggg	aataagggcg	acacggaaat	gttgaatact	6120
catactcttc	ctttttcaat	attattgaag	catttatcag	ggttattgtc	tcatgagcgg	6180
atacatattt	gaatgtattt	agaaaaataa	acaaataggg	gttccgcgca	catttccccg	6240
aaaagtgcca	cctgacgtc					6259
010 000						

<210> SEQ ID NO 54 <211> LENGTH: 245

<400> SEQUENCE: 54

Ala Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val

<211> ZITY ZITYPE: PRT <213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: GFP amino acid sequence.

```
10
Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu
                               25
Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys
Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu
Cys Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Arg
His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg
Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val
Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile
Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn
Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly
                 150
                                       155
Ile Lys Val Asn Phe Lys Thr Arg His Asn Ile Glu Asp Gly Ser Val
Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro
Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser
                           200
Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val
                      215
Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Asn Ile Asp
                   230
                                       235
Gly Gly Gly Gly
<210> SEQ ID NO 55
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: G-spacer flexible spacer
<400> SEQUENCE: 55
Gly Gly Gly Gly
<210> SEQ ID NO 56
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: G-spacer flexible spacer
<400> SEQUENCE: 56
Gly Gly Gly Ser
<210> SEQ ID NO 57
<211> LENGTH: 4
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
```

```
<223> OTHER INFORMATION: A-spacer flexible spacer
<400> SEQUENCE: 57
Ala Ala Ala Ala
<210> SEQ ID NO 58
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A-spacer flexible spacer
<400> SEQUENCE: 58
Ala Ala Ala Val
<210> SEQ ID NO 59
<211> LENGTH: 821
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 59
Met Val Ser Trp Gly Arg Phe Ile Cys Leu Val Val Val Thr Met Ala
Thr Leu Ser Leu Ala Arg Pro Ser Phe Ser Leu Val Glu Asp Thr Thr
                               25
Leu Glu Pro Glu Glu Pro Pro Thr Lys Tyr Gln Ile Ser Gln Pro Glu
                         40
Val Tyr Val Ala Ala Pro Gly Glu Ser Leu Glu Val Arg Cys Leu Leu
Lys Asp Ala Ala Val Ile Ser Trp Thr Lys Asp Gly Val His Leu Gly
Pro Asn Asn Arg Thr Val Leu Ile Gly Glu Tyr Leu Gln Ile Lys Gly
Ala Thr Pro Arg Asp Ser Gly Leu Tyr Ala Cys Thr Ala Ser Arg Thr
Val Asp Ser Glu Thr Trp Tyr Phe Met Val Asn Val Thr Asp Ala Ile
                           120
Ser Ser Gly Asp Asp Glu Asp Asp Thr Asp Gly Ala Glu Asp Phe Val
Ser Glu Asn Ser Asn Asn Lys Arg Ala Pro Tyr Trp Thr Asn Thr Glu
Lys Met Glu Lys Arg Leu His Ala Val Pro Ala Ala Asn Thr Val Lys
Phe Arg Cys Pro Ala Gly Gly Asn Pro Met Pro Thr Met Arg Trp Leu
Lys Asn Gly Lys Glu Phe Lys Gln Glu His Arg Ile Gly Gly Tyr Lys
                          200
Val Arg Asn Gln His Trp Ser Leu Ile Met Glu Ser Val Val Pro Ser
                     215
Asp Lys Gly Asn Tyr Thr Cys Val Val Glu Asn Glu Tyr Gly Ser Ile
                  230
Asn His Thr Tyr His Leu Asp Val Val Glu Arg Ser Pro His Arg Pro
                                   250
Ile Leu Gln Ala Gly Leu Pro Ala Asn Ala Ser Thr Val Val Gly Gly
                               265
```

Asp	Val	Glu 275	Phe	Val	CAa	Lys	Val 280	Tyr	Ser	Asp	Ala	Gln 285	Pro	His	Ile
Gln	Trp 290	Ile	Lys	His	Val	Glu 295	Lys	Asn	Gly	Ser	300	Tyr	Gly	Pro	Asp
Gly 305	Leu	Pro	Tyr	Leu	Lys 310	Val	Leu	Lys	Ala	Ala 315	Gly	Val	Asn	Thr	Thr 320
Asp	Lys	Glu	Ile	Glu 325	Val	Leu	Tyr	Ile	Arg 330	Asn	Val	Thr	Phe	Glu 335	Asp
Ala	Gly	Glu	Tyr 340	Thr	Cys	Leu	Ala	Gly 345	Asn	Ser	Ile	Gly	Ile 350	Ser	Phe
His	Ser	Ala 355	Trp	Leu	Thr	Val	Leu 360	Pro	Ala	Pro	Gly	Arg 365	Glu	Lys	Glu
Ile	Thr 370	Ala	Ser	Pro	Asp	Tyr 375	Leu	Glu	Ile	Ala	Ile 380	Tyr	Cya	Ile	Gly
Val 385	Phe	Leu	Ile	Ala	390 290	Met	Val	Val	Thr	Val 395	Ile	Leu	Cha	Arg	Met 400
Lys	Asn	Thr	Thr	Lys 405	Lys	Pro	Asp	Phe	Ser 410	Ser	Gln	Pro	Ala	Val 415	His
Lys	Leu	Thr	Lys 420	Arg	Ile	Pro	Leu	Arg 425	Arg	Gln	Val	Thr	Val 430	Ser	Ala
Glu	Ser	Ser 435	Ser	Ser	Met	Asn	Ser 440	Asn	Thr	Pro	Leu	Val 445	Arg	Ile	Thr
Thr	Arg 450	Leu	Ser	Ser	Thr	Ala 455	Asp	Thr	Pro	Met	Leu 460	Ala	Gly	Val	Ser
Glu 465	Tyr	Glu	Leu	Pro	Glu 470	Asp	Pro	Lys	Trp	Glu 475	Phe	Pro	Arg	Asp	Lys 480
Leu	Thr	Leu	Gly	Lys 485	Pro	Leu	Gly	Glu	Gly 490	Càa	Phe	Gly	Gln	Val 495	Val
Met	Ala	Glu	Ala 500	Val	Gly	Ile	Asp	Lys 505	Asp	Lys	Pro	ГÀв	Glu 510	Ala	Val
Thr	Val	Ala 515	Val	ГÀа	Met	Leu	Lys 520	Asp	Asp	Ala	Thr	Glu 525	ГÀЗ	Asp	Leu
Ser	Asp 530	Leu	Val	Ser	Glu	Met 535	Glu	Met	Met	Lys	Met 540	Ile	Gly	ГÀа	His
Lys 545	Asn	Ile	Ile	Asn	Leu 550	Leu	Gly	Ala	Cys	Thr 555	Gln	Asp	Gly	Pro	Leu 560
Tyr	Val	Ile	Val	Glu 565	Tyr	Ala	Ser	Lys	Gly 570	Asn	Leu	Arg	Glu	Tyr 575	Leu
Arg	Ala	Arg	Arg 580	Pro	Pro	Gly	Met	Glu 585	Tyr	Ser	Tyr	Asp	Ile 590	Asn	Arg
Val	Pro	Glu 595	Glu	Gln	Met	Thr	Phe 600	Lys	Asp	Leu	Val	Ser 605	CÀa	Thr	Tyr
Gln	Leu 610	Ala	Arg	Gly	Met	Glu 615	Tyr	Leu	Ala	Ser	Gln 620	ГÀв	CÀa	Ile	His
Arg 625	Asp	Leu	Ala	Ala	Arg 630	Asn	Val	Leu	Val	Thr 635	Glu	Asn	Asn	Val	Met 640
Lys	Ile	Ala	Asp	Phe 645	Gly	Leu	Ala	Arg	Asp 650	Ile	Asn	Asn	Ile	Asp 655	Tyr
Tyr	Lys	Lys	Thr 660	Thr	Asn	Gly	Arg	Leu 665	Pro	Val	Lys	Trp	Met 670	Ala	Pro
Glu	Ala	Leu 675	Phe	Asp	Arg	Val	Tyr 680	Thr	His	Gln	Ser	Asp 685	Val	Trp	Ser
Phe	Gly	Val	Leu	Met	Trp	Glu	Ile	Phe	Thr	Leu	Gly	Gly	Ser	Pro	Tyr

												0011	CIII	aca	
	690					695					700				
Pro 705	Gly	Ile	Pro	Val	Glu 710	Glu	Leu	Phe	Lys	Leu 715	Leu	Lys	Glu	Gly	His 720
Arg	Met	Asp	Lys	Pro 725	Ala	Asn	Cys	Thr	Asn 730	Glu	Leu	Tyr	Met	Met 735	Met
Arg	Asp	Cys	Trp 740	His	Ala	Val	Pro	Ser 745	Gln	Arg	Pro	Thr	Phe 750	Lys	Gln
Leu	Val	Glu 755	Asp	Leu	Asp	Arg	Ile 760	Leu	Thr	Leu	Thr	Thr 765	Asn	Glu	Glu
Tyr	Leu 770	Asp	Leu	Ser	Gln	Pro 775	Leu	Glu	Gln	Tyr	Ser 780	Pro	Ser	Tyr	Pro
Asp 785	Thr	Arg	Ser	Ser	Cys 790	Ser	Ser	Gly	Asp	Asp 795	Ser	Val	Phe	Ser	Pro 800
Asp	Pro	Met	Pro	Tyr 805	Glu	Pro	CÀa	Leu	Pro 810	Gln	Tyr	Pro	His	Ile 815	Asn
Gly	Ser	Val	Lys 820	Thr											
-210)> SI	70 TT	OM C	60											
<211	L> LE 2> TY	ENGTI	H: 82												
				Homo	sa <u>r</u>	piens	3								
< 400)> SI	EQUE	ICE :	60											
Met 1	Val	Ser	Trp	Gly 5	Arg	Phe	Ile	Cha	Leu 10	Val	Val	Val	Thr	Met 15	Ala
Thr	Leu	Ser	Leu 20	Ala	Arg	Pro	Ser	Phe 25	Ser	Leu	Val	Glu	30	Thr	Thr
Leu	Glu	Pro 35	Glu	Glu	Pro	Pro	Thr 40	Lys	Tyr	Gln	Ile	Ser 45	Gln	Pro	Glu
Val	Tyr 50	Val	Ala	Ala	Pro	Gly 55	Glu	Ser	Leu	Glu	Val 60	Arg	Cys	Leu	Leu
Lys 65	Asp	Ala	Ala	Val	Ile 70	Ser	Trp	Thr	Lys	Asp 75	Gly	Val	His	Leu	Gly 80
Pro	Asn	Asn	Arg	Thr 85	Val	Leu	Ile	Gly	Glu 90	Tyr	Leu	Gln	Ile	Lys 95	Gly
Ala	Thr	Pro	Arg 100	Asp	Ser	Gly	Leu	Tyr 105	Ala	Cys	Thr	Ala	Ser 110	Arg	Thr
Val	Asp	Ser 115	Glu	Thr	Trp	Tyr	Phe 120	Met	Val	Asn	Val	Thr 125	Asp	Ala	Ile
Ser	Ser 130	Gly	Asp	Asp	Glu	Asp 135	Asp	Thr	Asp	Gly	Ala 140	Glu	Asp	Phe	Val
Ser 145	Glu	Asn	Ser	Asn	Asn 150	Lys	Arg	Ala	Pro	Tyr 155	Trp	Thr	Asn	Thr	Glu 160
Lys	Met	Glu	Lys	Arg 165	Leu	His	Ala	Val	Pro 170	Ala	Ala	Asn	Thr	Val 175	Lys
Phe	Arg	Сув	Pro 180	Ala	Gly	Gly	Asn	Pro 185	Met	Pro	Thr	Met	Arg 190	Trp	Leu
Lys	Asn	Gly 195	Lys	Glu	Phe	Lys	Gln 200	Glu	His	Arg	Ile	Gly 205	Gly	Tyr	Lys
Val	Arg 210	Asn	Gln	His	Trp	Ser 215	Leu	Ile	Met	Glu	Ser 220	Val	Val	Pro	Ser
Asp 225	Lys	Gly	Asn	Tyr	Thr 230	САв	Val	Val	Glu	Asn 235	Glu	Tyr	Gly	Ser	Ile 240

Asn	His	Thr	Tyr	His 245	Leu	Asp	Val	Val	Glu 250	Arg	Ser	Pro	His	Arg 255	Pro
Ile	Leu	Gln	Ala 260	Gly	Leu	Pro	Ala	Asn 265	Ala	Ser	Thr	Val	Val 270	Gly	Gly
Asp	Val	Glu 275	Phe	Val	CÀa	Lys	Val 280	Tyr	Ser	Asp	Ala	Gln 285	Pro	His	Ile
Gln	Trp 290	Ile	Lys	His	Val	Glu 295	Lys	Asn	Gly	Ser	300 Lys	Tyr	Gly	Pro	Asp
Gly 305	Leu	Pro	Tyr	Leu	Lys 310	Val	Leu	Lys	His	Ser 315	Gly	Ile	Asn	Ser	Ser 320
Asn	Ala	Glu	Val	Leu 325	Ala	Leu	Phe	Asn	Val 330	Thr	Glu	Ala	Asp	Ala 335	Gly
Glu	Tyr	Ile	Cys 340	ГÀа	Val	Ser	Asn	Tyr 345	Ile	Gly	Gln	Ala	Asn 350	Gln	Ser
Ala	Trp	Leu 355	Thr	Val	Leu	Pro	14s	Gln	Gln	Ala	Pro	Gly 365	Arg	Glu	Lys
Glu	Ile 370	Thr	Ala	Ser	Pro	Asp 375	Tyr	Leu	Glu	Ile	Ala 380	Ile	Tyr	Cys	Ile
Gly 385	Val	Phe	Leu	Ile	Ala 390	Cys	Met	Val	Val	Thr 395	Val	Ile	Leu	Cys	Arg 400
Met	Lys	Asn	Thr	Thr 405	ГÀа	Lys	Pro	Asp	Phe 410	Ser	Ser	Gln	Pro	Ala 415	Val
His	ГЛа	Leu	Thr 420	rys	Arg	Ile	Pro	Leu 425	Arg	Arg	Gln	Val	Thr 430	Val	Ser
Ala	Glu	Ser 435	Ser	Ser	Ser	Met	Asn 440	Ser	Asn	Thr	Pro	Leu 445	Val	Arg	Ile
Thr	Thr 450	Arg	Leu	Ser	Ser	Thr 455	Ala	Asp	Thr	Pro	Met 460	Leu	Ala	Gly	Val
Ser 465	Glu	Tyr	Glu	Leu	Pro 470	Glu	Asp	Pro	Lys	Trp 475	Glu	Phe	Pro	Arg	Asp 480
Lys	Leu	Thr	Leu	Gly 485	Lys	Pro	Leu	Gly	Glu 490	Gly	Cys	Phe	Gly	Gln 495	Val
Val	Met	Ala	Glu 500	Ala	Val	Gly	Ile	Asp 505	Lys	Asp	Lys	Pro	Lys 510	Glu	Ala
Val	Thr	Val 515	Ala	Val	Lys	Met	Leu 520	Lys	Asp	Asp	Ala	Thr 525	Glu	Lys	Asp
Leu	Ser 530	Asp	Leu	Val	Ser	Glu 535	Met	Glu	Met	Met	Lys 540	Met	Ile	Gly	Lys
His 545	Lys	Asn	Ile	Ile	Asn 550	Leu	Leu	Gly	Ala	Cys 555	Thr	Gln	Asp	Gly	Pro 560
Leu	Tyr	Val	Ile	Val 565	Glu	Tyr	Ala	Ser	Lys 570	Gly	Asn	Leu	Arg	Glu 575	Tyr
Leu	Arg	Ala	Arg 580	Arg	Pro	Pro	Gly	Met 585	Glu	Tyr	Ser	Tyr	Asp 590	Ile	Asn
Arg	Val	Pro 595	Glu	Glu	Gln	Met	Thr 600	Phe	Lys	Asp	Leu	Val 605	Ser	СЛа	Thr
Tyr	Gln 610	Leu	Ala	Arg	Gly	Met 615	Glu	Tyr	Leu	Ala	Ser 620	Gln	Lys	Сув	Ile
His 625	Arg	Asp	Leu	Ala	Ala 630	Arg	Asn	Val	Leu	Val 635	Thr	Glu	Asn	Asn	Val 640
Met	Lys	Ile	Ala	Asp 645	Phe	Gly	Leu	Ala	Arg 650	Asp	Ile	Asn	Asn	Ile 655	Asp
Tyr	Tyr	Lys	Lys	Thr	Thr	Asn	Gly	Arg	Leu	Pro	Val	ГХа	Trp	Met	Ala

			660					665					670		
Pro	Glu	Ala 675	Leu	Phe	Asp	Arg	Val 680	Tyr	Thr	His	Gln	Ser 685	Asp	Val	Trp
Ser	Phe 690	Gly	Val	Leu	Met	Trp 695	Glu	Ile	Phe	Thr	Leu 700	Gly	Gly	Ser	Pro
Tyr 705	Pro	Gly	Ile	Pro	Val 710	Glu	Glu	Leu	Phe	Lys 715	Leu	Leu	ГÀз	Glu	Gly 720
His	Arg	Met	Asp	Lys 725	Pro	Ala	Asn	Сув	Thr 730	Asn	Glu	Leu	Tyr	Met 735	Met
Met	Arg	Asp	Cys 740	Trp	His	Ala	Val	Pro 745	Ser	Gln	Arg	Pro	Thr 750	Phe	Lys
Gln	Leu	Val 755	Glu	Asp	Leu	Asp	Arg 760	Ile	Leu	Thr	Leu	Thr 765	Thr	Asn	Glu
Glu	Tyr 770	Leu	Asp	Leu	Ser	Gln 775	Pro	Leu	Glu	Gln	Tyr 780	Ser	Pro	Ser	Tyr
Pro 785	Asp	Thr	Arg	Ser	Ser 790	Cys	Ser	Ser	Gly	Asp 795	Asp	Ser	Val	Phe	Ser 800
Pro	Asp	Pro	Met	Pro 805	Tyr	Glu	Pro	Сув	Leu 810	Pro	Gln	Tyr	Pro	His 815	Ile
Asn	Gly	Ser	Val 820	Lys	Thr										
<211 <212	0> SI L> LI 2> TY 3> OF	ENGTI (PE :	H: 76	59	o saj	piens	3								
< 400)> SI	EQUEI	ICE :	61											
Met 1	Val	Ser	Trp	Gly 5	Arg	Phe	Ile	Сув	Leu 10	Val	Val	Val	Thr	Met 15	Ala
Thr	Leu	Ser	Leu 20	Ala	Arg	Pro	Ser	Phe 25	Ser	Leu	Val	Glu	Asp 30	Thr	Thr
Leu	Glu	Pro 35	Glu	Glu	Pro	Pro	Thr 40	Lys	Tyr	Gln	Ile	Ser 45	Gln	Pro	Glu
Val	Tyr 50	Val	Ala	Ala	Pro	Gly 55	Glu	Ser	Leu	Glu	Val 60	Arg	Сув	Leu	Leu
Lys 65	Asp	Ala	Ala	Val	Ile 70	Ser	Trp	Thr	Lys	Asp 75	Gly	Val	His	Leu	Gly 80
Pro	Asn	Asn	Arg	Thr 85	Val	Leu	Ile	Gly	Glu 90	Tyr	Leu	Gln	Ile	Lув 95	Gly
Ala	Thr	Pro	Arg 100	Asp	Ser	Gly	Leu	Tyr 105	Ala	Сла	Thr	Ala	Ser 110	Arg	Thr
Val	Asp	Ser 115	Glu	Thr	Trp	Tyr	Phe 120	Met	Val	Asn	Val	Thr 125	Asp	Ala	Ile
Ser	Ser 130	Gly	Asp	Asp	Glu	Asp 135	Asp	Thr	Asp	Gly	Ala 140	Glu	Asp	Phe	Val
Ser 145	Glu	Asn	Ser	Asn	Asn 150	Lys	Arg	Ala	Pro	Tyr 155	Trp	Thr	Asn	Thr	Glu 160
Lys	Met	Glu	Lys	Arg 165	Leu	His	Ala	Val	Pro 170	Ala	Ala	Asn	Thr	Val 175	Lys
Phe	Arg	Сла	Pro 180	Ala	Gly	Gly	Asn	Pro 185	Met	Pro	Thr	Met	Arg 190	Trp	Leu
rys	Asn	Gly 195	Lys	Glu	Phe	Lys	Gln 200	Glu	His	Arg	Ile	Gly 205	Gly	Tyr	Lys

Val	Arg 210	Asn	Gln	His	Trp	Ser 215	Leu	Ile	Met	Glu	Ser 220	Val	Val	Pro	Ser
Asp 225	ГÀв	Gly	Asn	Tyr	Thr 230	Cys	Val	Val	Glu	Asn 235	Glu	Tyr	Gly	Ser	Ile 240
Asn	His	Thr	Tyr	His 245	Leu	Asp	Val	Val	Glu 250	Arg	Ser	Pro	His	Arg 255	Pro
Ile	Leu	Gln	Ala 260	Gly	Leu	Pro	Ala	Asn 265	Ala	Ser	Thr	Val	Val 270	Gly	Gly
Asp	Val	Glu 275	Phe	Val	CÀa	Lys	Val 280	Tyr	Ser	Asp	Ala	Gln 285	Pro	His	Ile
Gln	Trp 290	Ile	Lys	His	Val	Glu 295	Lys	Asn	Gly	Ser	300 Lys	Tyr	Gly	Pro	Asp
Gly 305	Leu	Pro	Tyr	Leu	Lys 310	Val	Leu	Lys	His	Ser 315	Gly	Ile	Asn	Ser	Ser 320
Asn	Ala	Glu	Val	Leu 325	Ala	Leu	Phe	Asn	Val 330	Thr	Glu	Ala	Asp	Ala 335	Gly
Glu	Tyr	Ile	Cys 340	Lys	Val	Ser	Asn	Tyr 345	Ile	Gly	Gln	Ala	Asn 350	Gln	Ser
Ala	Trp	Leu 355	Thr	Val	Leu	Pro	160	Gln	Gln	Ala	Pro	Gly 365	Arg	Glu	Lys
Glu	Ile 370	Thr	Ala	Ser	Pro	Asp 375	Tyr	Leu	Glu	Ile	Ala 380	Ile	Tyr	CÀa	Ile
Gly 385	Val	Phe	Leu	Ile	Ala 390	CAa	Met	Val	Val	Thr 395	Val	Ile	Leu	CÀa	Arg 400
Met	Lys	Asn	Thr	Thr 405	ГÀв	Lys	Pro	Asp	Phe 410	Ser	Ser	Gln	Pro	Ala 415	Val
His	Lys	Leu	Thr 420	ГÀЗ	Arg	Ile	Pro	Leu 425	Arg	Arg	Gln	Val	Thr 430	Val	Ser
Ala	Glu	Ser 435	Ser	Ser	Ser	Met	Asn 440	Ser	Asn	Thr	Pro	Leu 445	Val	Arg	Ile
Thr	Thr 450	Arg	Leu	Ser	Ser	Thr 455	Ala	Asp	Thr	Pro	Met 460	Leu	Ala	Gly	Val
Ser 465	Glu	Tyr	Glu	Leu	Pro 470	Glu	Asp	Pro	Lys	Trp 475	Glu	Phe	Pro	Arg	Asp 480
Lys	Leu	Thr	Leu	Gly 485	Lys	Pro	Leu	Gly	Glu 490	Gly	Cys	Phe	Gly	Gln 495	Val
Val	Met	Ala	Glu 500		Val	Gly	Ile	Asp 505	_	Asp	Lys	Pro	Lys 510	Glu	Ala
Val	Thr	Val 515	Ala	Val	ГÀЗ	Met	Leu 520	Lys	Asp	Asp	Ala	Thr 525	Glu	ГÀа	Asp
Leu	Ser 530	Asp	Leu	Val	Ser	Glu 535	Met	Glu	Met	Met	Lys 540	Met	Ile	Gly	Lys
His 545	ГÀа	Asn	Ile	Ile	Asn 550	Leu	Leu	Gly	Ala	Сув 555	Thr	Gln	Asp	Gly	Pro 560
Leu	Tyr	Val	Ile	Val 565	Glu	Tyr	Ala	Ser	Lys 570	Gly	Asn	Leu	Arg	Glu 575	Tyr
Leu	Arg	Ala	Arg 580	Arg	Pro	Pro	Gly	Met 585	Glu	Tyr	Ser	Tyr	Asp 590	Ile	Asn
Arg	Val	Pro 595	Glu	Glu	Gln	Met	Thr 600	Phe	Lys	Asp	Leu	Val 605	Ser	СЛв	Thr
Tyr	Gln 610	Leu	Ala	Arg	Gly	Met 615	Glu	Tyr	Leu	Ala	Ser 620	Gln	Lys	Cys	Ile
His	Arg	Asp	Leu	Ala	Ala	Arg	Asn	Val	Leu	Val	Thr	Glu	Asn	Asn	Val

625					630					635					640
Met	Lys	Ile	Ala	Asp 645	Phe	Gly	Leu	Ala	Arg 650	Asp	Ile	Asn	Asn	Ile 655	Asp
Tyr	Tyr	Lys	Lys 660	Thr	Thr	Asn	Gly	Arg 665	Leu	Pro	Val	Lys	Trp 670	Met	Ala
Pro	Glu	Ala 675	Leu	Phe	Asp	Arg	Val 680	Tyr	Thr	His	Gln	Ser 685	Asp	Val	Trp
Ser	Phe 690	Gly	Val	Leu	Met	Trp 695	Glu	Ile	Phe	Thr	Leu 700	Gly	Gly	Ser	Pro
Tyr 705	Pro	Gly	Ile	Pro	Val 710	Glu	Glu	Leu	Phe	Lys 715	Leu	Leu	ГЛа	Glu	Gly 720
His	Arg	Met	Asp	Lys 725	Pro	Ala	Asn	Cys	Thr 730	Asn	Glu	Leu	Tyr	Met 735	Met
Met	Arg	Asp	Cys 740	Trp	His	Ala	Val	Pro 745	Ser	Gln	Arg	Pro	Thr 750	Phe	Lys
Gln	Leu	Val 755	Glu	Asp	Leu	Asp	Arg 760	Ile	Leu	Thr	Leu	Thr 765	Thr	Asn	Glu
Ile															
<211		ENGTI) NO H: 70												
				Homo	sa]	piens	3								
< 400)> SI	EQUEI	ICE :	62											
Met 1	Val	Ser	Trp	Gly 5	Arg	Phe	Ile	Cha	Leu 10	Val	Val	Val	Thr	Met 15	Ala
Thr	Leu	Ser	Leu 20	Ala	Arg	Pro	Ser	Phe 25	Ser	Leu	Val	Glu	Asp 30	Thr	Thr
Leu	Glu	Pro 35	Glu	Glu	Pro	Pro	Thr 40	Lys	Tyr	Gln	Ile	Ser 45	Gln	Pro	Glu
Val	Tyr 50	Val	Ala	Ala	Pro	Gly 55	Glu	Ser	Leu	Glu	Val 60	Arg	СЛа	Leu	Leu
Lys 65	Asp	Ala	Ala	Val	Ile 70	Ser	Trp	Thr	Lys	Asp 75	Gly	Val	His	Leu	Gly 80
Pro	Asn	Asn	Arg	Thr 85	Val	Leu	Ile	Gly	Glu 90	Tyr	Leu	Gln	Ile	Lys 95	Gly
Ala	Thr	Pro	Arg 100	Asp	Ser	Gly	Leu	Tyr 105	Ala	Сла	Thr	Ala	Ser 110	Arg	Thr
Val	Asp	Ser 115	Glu	Thr	Trp	Tyr	Phe 120	Met	Val	Asn	Val	Thr 125	Asp	Ala	Ile
Ser	Ser 130	Gly	Asp	Asp	Glu	Asp 135	Asp	Thr	Asp	Gly	Ala 140	Glu	Asp	Phe	Val
Ser 145	Glu	Asn	Ser	Asn	Asn 150	ГÀа	Arg	Ala	Pro	Tyr 155	Trp	Thr	Asn	Thr	Glu 160
Lys	Met	Glu	Lys	Arg 165	Leu	His	Ala	Val	Pro 170	Ala	Ala	Asn	Thr	Val 175	Lys
Phe	Arg	Cys	Pro 180	Ala	Gly	Gly	Asn	Pro 185	Met	Pro	Thr	Met	Arg 190	Trp	Leu
ГАв	Asn	Gly 195	Lys	Glu	Phe	Lys	Gln 200	Glu	His	Arg	Ile	Gly 205	Gly	Tyr	Lys
Val	Arg 210	Asn	Gln	His	Trp	Ser 215	Leu	Ile	Met	Glu	Ser 220	Val	Val	Pro	Ser
Asp	Lys	Gly	Asn	Tyr	Thr	Cys	Val	Val	Glu	Asn	Glu	Tyr	Gly	Ser	Ile

225					230					235					240
Asn	His	Thr	Tyr	His 245	Leu	Asp	Val	Val	Ala 250	Pro	Gly	Arg	Glu	Lys 255	Glu
Ile	Thr	Ala	Ser 260	Pro	Asp	Tyr	Leu	Glu 265	Ile	Ala	Ile	Tyr	Cys 270	Ile	Gly
Val	Phe	Leu 275	Ile	Ala	CAa	Met	Val 280	Val	Thr	Val	Ile	Leu 285	Сув	Arg	Met
Lys	Asn 290	Thr	Thr	Lys	Lys	Pro 295	Asp	Phe	Ser	Ser	Gln 300	Pro	Ala	Val	His
Lys 305	Leu	Thr	Lys	Arg	Ile 310	Pro	Leu	Arg	Arg	Gln 315	Val	Thr	Val	Ser	Ala 320
Glu	Ser	Ser	Ser	Ser 325	Met	Asn	Ser	Asn	Thr 330	Pro	Leu	Val	Arg	Ile 335	Thr
Thr	Arg	Leu	Ser 340	Ser	Thr	Ala	Asp	Thr 345	Pro	Met	Leu	Ala	Gly 350	Val	Ser
Glu	Tyr	Glu 355	Leu	Pro	Glu	Asp	Pro 360	Lys	Trp	Glu	Phe	Pro 365	Arg	Asp	Lys
Leu	Thr 370	Leu	Gly	Lys	Pro	Leu 375	Gly	Glu	Gly	Cys	Phe 380	Gly	Gln	Val	Val
Met 385	Ala	Glu	Ala	Val	Gly 390	Ile	Asp	Lys	Asp	Lys 395	Pro	Lys	Glu	Ala	Val 400
Thr	Val	Ala	Val	Lys 405	Met	Leu	Lys	Asp	Asp 410	Ala	Thr	Glu	Lys	Asp 415	Leu
Ser	Asp	Leu	Val 420	Ser	Glu	Met	Glu	Met 425	Met	Lys	Met	Ile	Gly 430	Lys	His
Lys	Asn	Ile 435	Ile	Asn	Leu	Leu	Gly 440	Ala	Cys	Thr	Gln	Asp 445	Gly	Pro	Leu
Tyr	Val 450	Ile	Val	Glu	Tyr	Ala 455	Ser	Lys	Gly	Asn	Leu 460	Arg	Glu	Tyr	Leu
Arg 465	Ala	Arg	Arg	Pro	Pro 470	Gly	Met	Glu	Tyr	Ser 475	Tyr	Asp	Ile	Asn	Arg 480
Val	Pro	Glu	Glu	Gln 485	Met	Thr	Phe	Lys	Asp 490	Leu	Val	Ser	Сув	Thr 495	Tyr
Gln	Leu	Ala	Arg 500	Gly	Met	Glu	Tyr	Leu 505	Ala	Ser	Gln	ГÀа	Cys 510	Ile	His
Arg	Asp	Leu 515	Ala	Ala	Arg	Asn	Val 520	Leu	Val	Thr	Glu	Asn 525	Asn	Val	Met
Lys	Ile 530	Ala	Asp	Phe	Gly	Leu 535	Ala	Arg	Asp	Ile	Asn 540	Asn	Ile	Asp	Tyr
Tyr 545	ГÀа	ГÀа	Thr	Thr	Asn 550	Gly	Arg	Leu	Pro	Val 555	ГÀа	Trp	Met	Ala	Pro 560
Glu	Ala	Leu	Phe	Asp 565	Arg	Val	Tyr	Thr	His 570	Gln	Ser	Asp	Val	Trp 575	Ser
Phe	Gly	Val	Leu 580	Met	Trp	Glu	Ile	Phe 585	Thr	Leu	Gly	Gly	Ser 590	Pro	Tyr
Pro	Gly	Ile 595	Pro	Val	Glu	Glu	Leu 600	Phe	Lys	Leu	Leu	Lys 605	Glu	Gly	His
Arg	Met 610	Asp	Lys	Pro	Ala	Asn 615	Cys	Thr	Asn	Glu	Leu 620	Tyr	Met	Met	Met
Arg 625	Asp	Сув	Trp	His	Ala 630	Val	Pro	Ser	Gln	Arg 635	Pro	Thr	Phe	Lys	Gln 640
Leu	Val	Glu	Asp	Leu 645	Asp	Arg	Ile	Leu	Thr 650	Leu	Thr	Thr	Asn	Glu 655	Glu

Tyr Leu Asp Leu Ser Gln Pro Leu Glu Gln Tyr Ser Pro Ser Tyr Pro 665 Asp Thr Arg Ser Ser Cys Ser Ser Gly Asp Asp Ser Val Phe Ser Pro 680 Asp Pro Met Pro Tyr Glu Pro Cys Leu Pro Gln Tyr Pro His Ile Asn Gly Ser Val Lys Thr 705 <210> SEQ ID NO 63 <211> LENGTH: 707 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 63 Met Val Ser Trp Gly Arg Phe Ile Cys Leu Val Val Val Thr Met Ala 1 5 10 15 Thr Leu Ser Leu Ala Arg Pro Ser Phe Ser Leu Val Glu Asp Thr Thr Leu Glu Pro Glu Asp Ala Ile Ser Ser Gly Asp Asp Glu Asp Asp Thr Asp Gly Ala Glu Asp Phe Val Ser Glu Asn Ser Asn Asn Lys Arg Ala 50 55 60 Pro Tyr Trp Thr Asn Thr Glu Lys Met Glu Lys Arg Leu His Ala Val 70 Pro Ala Ala Asn Thr Val Lys Phe Arg Cys Pro Ala Gly Gly Asn Pro Met Pro Thr Met Arg Trp Leu Lys Asn Gly Lys Glu Phe Lys Gln Glu 105 His Arg Ile Gly Gly Tyr Lys Val Arg Asn Gln His Trp Ser Leu Ile 120 Met Glu Ser Val Val Pro Ser Asp Lys Gly Asn Tyr Thr Cys Val Val 135 Glu Asn Glu Tyr Gly Ser Ile Asn His Thr Tyr His Leu Asp Val Val Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn Ala Ser Thr Val Val Gly Gly Asp Val Glu Phe Val Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Ile Lys His Val Glu Lys Asn Gly Ser Lys Tyr Gly Pro Asp Gly Leu Pro Tyr Leu Lys Val Leu Lys Ala Ala Gly Val Asn Thr Thr Asp Lys Glu Ile Glu Val Leu Tyr Ile Arg Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 250 Asn Ser Ile Gly Ile Ser Phe His Ser Ala Trp Leu Thr Val Leu Pro 265 Ala Pro Gly Arg Glu Lys Glu Ile Thr Ala Ser Pro Asp Tyr Leu Glu 280 Ile Ala Ile Tyr Cys Ile Gly Val Phe Leu Ile Ala Cys Met Val Val Thr Val Ile Leu Cys Arg Met Lys Asn Thr Thr Lys Lys Pro Asp Phe

-continued

305					310					315					320
Ser	Ser	Gln	Pro	Ala 325	Val	His	Lys	Leu	Thr 330	Lys	Arg	Ile	Pro	Leu 335	Arg
Arg	Gln	Val	Thr 340	Val	Ser	Ala	Glu	Ser 345	Ser	Ser	Ser	Met	Asn 350	Ser	Asn
Thr	Pro	Leu 355	Val	Arg	Ile	Thr	Thr 360	Arg	Leu	Ser	Ser	Thr 365	Ala	Asp	Thr
Pro	Met 370	Leu	Ala	Gly	Val	Ser 375	Glu	Tyr	Glu	Leu	Pro 380	Glu	Asp	Pro	Lys
Trp 385	Glu	Phe	Pro	Arg	390	Lys	Leu	Thr	Leu	Gly 395	Lys	Pro	Leu	Gly	Glu 400
Gly	Cys	Phe	Gly	Gln 405	Val	Val	Met	Ala	Glu 410	Ala	Val	Gly	Ile	Asp 415	Lys
Asp	Lys	Pro	Lys 420	Glu	Ala	Val	Thr	Val 425	Ala	Val	ГÀа	Met	Leu 430	ГЛа	Asp
Asp	Ala	Thr 435	Glu	Lys	Asp	Leu	Ser 440	Asp	Leu	Val	Ser	Glu 445	Met	Glu	Met
Met	Lys 450	Met	Ile	Gly	Lys	His 455	Lys	Asn	Ile	Ile	Asn 460	Leu	Leu	Gly	Ala
465				_	470		-			475		-	Ala		480
				485	-		_		490	_			Gly	495	
-		-	500					505					Thr 510		-
_		515		-		-	520			_		525	Glu	-	
	530		-	-		535	_	_			540		Asn -		
545					550		-			555		_	Leu		560
				565	_	-	-	-	570				Gly	575	
		-	580					585			_		Val 590	-	
		595	_		_		600	_				605	Glu		
	610					615					620		Glu		
625					630					635			Asn		640
Asn	Glu	Leu	Tyr	Met 645	Met	Met	Arg	Asp	650	Trp	His	Ala	Val	Pro 655	Ser
Gln	Arg	Pro	Thr 660	Phe	ГÀа	Gln	Leu	Val 665	Glu	Asp	Leu	Asp	Arg 670	Ile	Leu
Thr	Leu	Thr 675	Thr	Asn	Glu	Glu	Glu 680	Lys	Lys	Val	Ser	Gly 685	Ala	Val	Asp
Cys	His 690	Lys	Pro	Pro	Cya	Asn 695	Pro	Ser	His	Leu	Pro 700	Cys	Val	Leu	Ala
Val 705	Asp	Gln													

<210> SEQ ID NO 64

	1> LI 2> T			06											
<213	3 > OI	RGAN:	ISM:	Homo	sa]	piens	3								
< 400	0 > SI	EQUEI	ICE :	64											
Met 1	Val	Ser	Trp	Gly 5	Arg	Phe	Ile	Cys	Leu 10	Val	Val	Val	Thr	Met 15	Ala
Thr	Leu	Ser	Leu 20	Ala	Arg	Pro	Ser	Phe 25	Ser	Leu	Val	Glu	30	Thr	Thr
Leu	Glu	Pro 35	Glu	Gly	Ala	Pro	Tyr 40	Trp	Thr	Asn	Thr	Glu 45	Lys	Met	Glu
Lys	Arg 50	Leu	His	Ala	Val	Pro 55	Ala	Ala	Asn	Thr	Val 60	ГÀа	Phe	Arg	Cya
Pro 65	Ala	Gly	Gly	Asn	Pro 70	Met	Pro	Thr	Met	Arg 75	Trp	Leu	Lys	Asn	Gly 80
Lys	Glu	Phe	Lys	Gln 85	Glu	His	Arg	Ile	Gly 90	Gly	Tyr	ГÀа	Val	Arg 95	Asn
Gln	His	Trp	Ser 100	Leu	Ile	Met	Glu	Ser 105	Val	Val	Pro	Ser	Asp 110	Lys	Gly
Asn	Tyr	Thr 115	Cys	Val	Val	Glu	Asn 120	Glu	Tyr	Gly	Ser	Ile 125	Asn	His	Thr
Tyr	His 130	Leu	Asp	Val	Val	Glu 135	Arg	Ser	Pro	His	Arg 140	Pro	Ile	Leu	Gln
Ala 145	Gly	Leu	Pro	Ala	Asn 150	Ala	Ser	Thr	Val	Val 155	Gly	Gly	Asp	Val	Glu 160
Phe	Val	Сув	Lys	Val 165	Tyr	Ser	Asp	Ala	Gln 170	Pro	His	Ile	Gln	Trp 175	Ile
Lys	His	Val	Glu 180	Lys	Asn	Gly	Ser	Lys 185	Tyr	Gly	Pro	Asp	Gly 190	Leu	Pro
Tyr	Leu	Lys 195	Val	Leu	Lys	Ala	Ala 200	Gly	Val	Asn	Thr	Thr 205	Asp	Lys	Glu
Ile	Glu 210	Val	Leu	Tyr	Ile	Arg 215	Asn	Val	Thr	Phe	Glu 220	Asp	Ala	Gly	Glu
Tyr 225	Thr	Сув	Leu	Ala	Gly 230	Asn	Ser	Ile	Gly	Ile 235	Ser	Phe	His	Ser	Ala 240
Trp	Leu	Thr	Val	Leu 245	Pro	Ala	Pro	Gly	Arg 250	Glu	Lys	Glu	Ile	Thr 255	Ala
Ser	Pro	Asp	Tyr 260	Leu	Glu	Ile	Ala	Ile 265	Tyr	Сув	Ile	Gly	Val 270	Phe	Leu
Ile	Ala	Сув 275	Met	Val	Val	Thr	Val 280	Ile	Leu	Сув	Arg	Met 285	Lys	Asn	Thr
Thr	Lys 290	Lys	Pro	Asp	Phe	Ser 295	Ser	Gln	Pro	Ala	Val 300	His	ГÀа	Leu	Thr
Lys 305	Arg	Ile	Pro	Leu	Arg 310	Arg	Gln	Val	Thr	Val 315	Ser	Ala	Glu	Ser	Ser 320
Ser	Ser	Met	Asn	Ser 325	Asn	Thr	Pro	Leu	Val 330	Arg	Ile	Thr	Thr	Arg 335	Leu
Ser	Ser	Thr	Ala 340	Asp	Thr	Pro	Met	Leu 345	Ala	Gly	Val	Ser	Glu 350	Tyr	Glu
Leu	Pro	Glu 355	Asp	Pro	Lys	Trp	Glu 360	Phe	Pro	Arg	Asp	Lys 365	Leu	Thr	Leu
Gly	Lys 370	Pro	Leu	Gly	Glu	Gly 375	Cys	Phe	Gly	Gln	Val 380	Val	Met	Ala	Glu
Ala	Val	Gly	Ile	Asp	Lys	Asp	Lys	Pro	Lys	Glu	Ala	Val	Thr	Val	Ala

385					390					395					400
Val	Lys	Met	Leu	Lys 405	Asp	Asp	Ala	Thr	Glu 410	Lys	Asp	Leu	Ser	Asp 415	Leu
Val	Ser	Glu	Met 420	Glu	Met	Met	Lys	Met 425	Ile	Gly	Lys	His	Lys 430	Asn	Ile
Ile	Asn	Leu 435	Leu	Gly	Ala	СЛа	Thr 440	Gln	Asp	Gly	Pro	Leu 445	Tyr	Val	Ile
Val	Glu 450	Tyr	Ala	Ser	Lys	Gly 455	Asn	Leu	Arg	Glu	Tyr 460	Leu	Arg	Ala	Arg
Arg 465	Pro	Pro	Gly	Met	Glu 470	Tyr	Ser	Tyr	Asp	Ile 475	Asn	Arg	Val	Pro	Glu 480
Glu	Gln	Met	Thr	Phe 485	Lys	Asp	Leu	Val	Ser 490	Cys	Thr	Tyr	Gln	Leu 495	Ala
Arg	Gly	Met	Glu 500	Tyr	Leu	Ala	Ser	Gln 505	Lys	СЛа	Ile	His	Arg 510	Asp	Leu
Ala	Ala	Arg 515	Asn	Val	Leu	Val	Thr 520	Glu	Asn	Asn	Val	Met 525	Lys	Ile	Ala
Asp	Phe 530	Gly	Leu	Ala	Arg	Asp 535	Ile	Asn	Asn	Ile	Asp 540	Tyr	Tyr	Lys	Lys
Thr 545	Thr	Asn	Gly	Arg	Leu 550	Pro	Val	Lys	Trp	Met 555	Ala	Pro	Glu	Ala	Leu 560
Phe	Asp	Arg	Val	Tyr 565	Thr	His	Gln	Ser	Asp 570	Val	Trp	Ser	Phe	Gly 575	Val
Leu	Met	Trp	Glu 580	Ile	Phe	Thr	Leu	Gly 585	Gly	Ser	Pro	Tyr	Pro 590	Gly	Ile
Pro	Val	Glu 595	Glu	Leu	Phe	Lys	Leu 600	Leu	Lys	Glu	Gly	His 605	Arg	Met	Asp
Lys	Pro 610	Ala	Asn	Cys	Thr	Asn 615	Glu	Leu	Tyr	Met	Met 620	Met	Arg	Asp	Cys
Trp 625	His	Ala	Val	Pro	Ser 630	Gln	Arg	Pro	Thr	Phe 635	Lys	Gln	Leu	Val	Glu 640
Asp	Leu	Asp	Arg	Ile 645	Leu	Thr	Leu	Thr	Thr 650	Asn	Glu	Glu	Tyr	Leu 655	Asp
Leu	Ser	Gln	Pro 660	Leu	Glu	Gln	Tyr	Ser 665	Pro	Ser	Tyr	Pro	Asp 670	Thr	Arg
Ser	Ser	Сув 675	Ser	Ser	Gly	Asp	Asp 680	Ser	Val	Phe	Ser	Pro 685	Asp	Pro	Met
Pro	Tyr 690	Glu	Pro	CAa	Leu	Pro 695	Gln	Tyr	Pro	His	Ile 700	Asn	Gly	Ser	Val
Lys 705	Thr														
<210)> SI	EQ II	ON C	65											
<212	L> LE 2> T? 3> OF	PE:	PRT		ารลา	ni ens	3								
)> SI				, pal	, 1011	5								
	Val				Arg	Phe	Ile	Сла	Leu 10	Val	Val	Val	Thr	Met 15	Ala
	Leu	Ser	Leu		Arq	Pro	Ser	Phe		Leu	Val	Glu	Asp		Thr
			20		,			25					30		
Leu	Glu	Pro 35	Glu	Glu	Pro	Pro	Thr 40	Lys	Tyr	Gln	Ile	Ser 45	Gln	Pro	Glu

Val	Tyr 50	Val	Ala	Ala	Pro	Gly 55	Glu	Ser	Leu	Glu	Val 60	Arg	Cys	Leu	Leu
Lys	Asp	Ala	Ala	Val	Ile 70	Ser	Trp	Thr	Lys	Asp 75	Gly	Val	His	Leu	Gly 80
Pro	Asn	Asn	Arg	Thr 85	Val	Leu	Ile	Gly	Glu 90	Tyr	Leu	Gln	Ile	Lys 95	Gly
Ala	Thr	Pro	Arg 100	Asp	Ser	Gly	Leu	Tyr 105	Ala	Cys	Thr	Ala	Ser 110	Arg	Thr
Val	Asp	Ser 115	Glu	Thr	Trp	Tyr	Phe 120	Met	Val	Asn	Val	Thr 125	Asp	Ala	Ile
Ser	Ser 130	Gly	Asp	Asp	Glu	Asp 135	Asp	Thr	Asp	Gly	Ala 140	Glu	Asp	Phe	Val
Ser 145	Glu	Asn	Ser	Asn	Asn 150	Lys	Arg	Ala	Pro	Tyr 155	Trp	Thr	Asn	Thr	Glu 160
Lys	Met	Glu	Lys	Arg 165	Leu	His	Ala	Val	Pro 170	Ala	Ala	Asn	Thr	Val 175	ГÀа
Phe	Arg	Cys	Pro 180	Ala	Gly	Gly	Asn	Pro 185	Met	Pro	Thr	Met	Arg 190	Trp	Leu
Lys	Asn	Gly 195	Lys	Glu	Phe	Lys	Gln 200	Glu	His	Arg	Ile	Gly 205	Gly	Tyr	ГХа
Val	Arg 210	Asn	Gln	His	Trp	Ser 215	Leu	Ile	Met	Glu	Ser 220	Val	Val	Pro	Ser
Asp 225	Lys	Gly	Asn	Tyr	Thr 230	CÀa	Val	Val	Glu	Asn 235	Glu	Tyr	Gly	Ser	Ile 240
Asn	His	Thr	Tyr	His 245	Leu	Asp	Val	Val	Glu 250	Arg	Ser	Pro	His	Arg 255	Pro
Ile	Leu	Gln	Ala 260	Gly	Leu	Pro	Ala	Asn 265	Ala	Ser	Thr	Val	Val 270	Gly	Gly
Asp	Val	Glu 275	Phe	Val	CAa	ГÀв	Val 280	Tyr	Ser	Asp	Ala	Gln 285	Pro	His	Ile
Gln	Trp 290	Ile	Lys	His	Val	Glu 295	Lys	Asn	Gly	Ser	300 TÀS	Tyr	Gly	Pro	Asp
Gly 305	Leu	Pro	Tyr	Leu	Lys 310	Val	Leu	Lys	Val	Ser 315	Ala	Glu	Ser	Ser	Ser 320
Ser	Met	Asn	Ser	Asn 325	Thr	Pro	Leu	Val	Arg 330	Ile	Thr	Thr	Arg	Leu 335	Ser
Ser	Thr	Ala	Asp 340	Thr	Pro	Met	Leu	Ala 345	Gly	Val	Ser	Glu	Tyr 350	Glu	Leu
Pro	Glu	Asp 355	Pro	Lys	Trp	Glu	Phe 360	Pro	Arg	Asp	Lys	Leu 365	Thr	Leu	Gly
ГÀа	Pro 370	Leu	Gly	Glu	Gly	Суs 375	Phe	Gly	Gln	Val	Val 380	Met	Ala	Glu	Ala
Val 385	Gly	Ile	Asp	ГÀа	390	Lys	Pro	Lys	Glu	Ala 395	Val	Thr	Val	Ala	Val 400
Lys	Met	Leu	Lys	Asp 405	Asp	Ala	Thr	Glu	Lys 410	Asp	Leu	Ser	Asp	Leu 415	Val
Ser	Glu	Met	Glu 420	Met	Met	Lys	Met	Ile 425	Gly	Lys	His	Lys	Asn 430	Ile	Ile
Asn	Leu	Leu 435	Gly	Ala	Cys	Thr	Gln 440	Asp	Gly	Pro	Leu	Tyr 445	Val	Ile	Val
Glu	Tyr 450	Ala	Ser	Lys	Gly	Asn 455	Leu	Arg	Glu	Tyr	Leu 460	Arg	Ala	Arg	Arg
Pro	Pro	Gly	Met	Glu	Tyr	Ser	Tyr	Asp	Ile	Asn	Arg	Val	Pro	Glu	Glu

465				470					475					480
Gln Met	Thr	Phe	Lys 485	Asp	Leu	Val	Ser	Cys 490	Thr	Tyr	Gln	Leu	Ala 495	Arg
Gly Met	Glu	Tyr 500	Leu	Ala	Ser	Gln	Lys 505	Cys	Ile	His	Arg	Asp 510	Leu	Ala
Ala Arg	Asn 515	Val	Leu	Val	Thr	Glu 520	Asn	Asn	Val	Met	Lys 525	Ile	Ala	Asp
Phe Gly 530	Leu	Ala	Arg	Asp	Ile 535	Asn	Asn	Ile	Asp	Tyr 540	Tyr	Lys	Lys	Thr
Thr Asn 545	Gly	Arg	Leu	Pro 550	Val	Lys	Trp	Met	Ala 555	Pro	Glu	Ala	Leu	Phe 560
Asp Arg	Val	Tyr	Thr 565	His	Gln	Ser	Asp	Val 570	Trp	Ser	Phe	Gly	Val 575	Leu
Met Trp	Glu	Ile 580	Phe	Thr	Leu	Gly	Gly 585	Ser	Pro	Tyr	Pro	Gly 590	Ile	Pro
Val Glu	Glu 595	Leu	Phe	Lys	Leu	Leu 600	Lys	Glu	Gly	His	Arg 605	Met	Asp	rys
Pro Ala 610	Asn	CÀa	Thr	Asn	Glu 615	Leu	Tyr	Met	Met	Met 620	Arg	Asp	CÀa	Trp
His Ala 625	Val	Pro	Ser	Gln 630	Arg	Pro	Thr	Phe	Lys 635	Gln	Leu	Val	Glu	Asp 640
Leu Asp	Arg	Ile	Leu 645	Thr	Leu	Thr	Thr	Asn 650	Glu	Glu	Tyr	Leu	Asp 655	Leu
Ser Gln	Pro	Leu 660	Glu	Gln	Tyr	Ser	Pro 665	Ser	Tyr	Pro	Asp	Thr 670	Arg	Ser
Ser Cys	Ser 675	Ser	Gly	Asp	Asp	Ser 680	Val	Phe	Ser	Pro	Asp 685	Pro	Met	Pro
Tyr Glu 690	Pro	Cys	Leu	Pro	Gln 695	Tyr	Pro	His	Ile	Asn 700	Gly	Ser	Val	Lys
Thr 705														
<210> SI <211> LI														
<212> TY			Homo	o sar	oiens	3								
<400> SI					•									
	-			7	Dl	T1 -	~	T	77-7	**- 7	77 - 7	m1	M - +	7.7 -
Met Val 1			5					10					15	
Thr Leu	Ser	Leu 20	Ala	Arg	Pro	Ser	Phe 25	Ser	Leu	Val	Glu	30 Asp	Thr	Thr
Leu Glu	Pro 35	Glu	Gly	Ala	Pro	Tyr 40	Trp	Thr	Asn	Thr	Glu 45	ГÀа	Met	Glu
Lys Arg 50	Leu	His	Ala	Val	Pro 55	Ala	Ala	Asn	Thr	Val 60	ГÀа	Phe	Arg	Cys
Pro Ala 65	Gly	Gly	Asn	Pro 70	Met	Pro	Thr	Met	Arg 75	Trp	Leu	Lys	Asn	Gly 80
Lys Glu	Phe	Lys	Gln 85	Glu	His	Arg	Ile	Gly 90	Gly	Tyr	Lys	Val	Arg 95	Asn
Gln His	Trp	Ser	Leu	Ile	Met	Glu	Ser 105	Val	Val	Pro	Ser	Asp 110	Lys	Gly
Asn Tyr	Thr	Сув	Val	Val	Glu	Asn 120	Glu	Tyr	Gly	Ser	Ile 125	Asn	His	Thr

Tyr	His 130	Leu	Asp	Val	Val	Glu 135	Arg	Ser	Pro	His	Arg 140	Pro	Ile	Leu	Gln
Ala 145	Gly	Leu	Pro	Ala	Asn 150	Ala	Ser	Thr	Val	Val 155	Gly	Gly	Asp	Val	Glu 160
Phe	Val	Cys	ГÀз	Val 165	Tyr	Ser	Asp	Ala	Gln 170	Pro	His	Ile	Gln	Trp 175	Ile
Lys	His	Val	Glu 180	Lys	Asn	Gly	Ser	Lys 185	Tyr	Gly	Pro	Asp	Gly 190	Leu	Pro
Tyr	Leu	Lys 195	Val	Leu	Lys	Ala	Ala 200	Gly	Val	Asn	Thr	Thr 205	Asp	Lys	Glu
Ile	Glu 210	Val	Leu	Tyr	Ile	Arg 215	Asn	Val	Thr	Phe	Glu 220	Asp	Ala	Gly	Glu
Tyr 225	Thr	Cya	Leu	Ala	Gly 230	Asn	Ser	Ile	Gly	Ile 235	Ser	Phe	His	Ser	Ala 240
Trp	Leu	Thr	Val	Leu 245	Pro	Ala	Pro	Gly	Arg 250	Glu	Lys	Glu	Ile	Thr 255	Ala
Ser	Pro	Asp	Tyr 260	Leu	Glu	Ile	Ala	Ile 265	Tyr	Cys	Ile	Gly	Val 270	Phe	Leu
Ile	Ala	Сув 275	Met	Val	Val	Thr	Val 280	Ile	Leu	Cys	Arg	Met 285	Lys	Asn	Thr
Thr	Lys 290	Lys	Pro	Asp	Phe	Ser 295	Ser	Gln	Pro	Ala	Val 300	His	Lys	Leu	Thr
305 Tys	Arg	Ile	Pro	Leu	Arg 310	Arg	Gln	Val	Ser	Ala 315	Glu	Ser	Ser	Ser	Ser 320
Met	Asn	Ser	Asn	Thr 325	Pro	Leu	Val	Arg	Ile 330	Thr	Thr	Arg	Leu	Ser 335	Ser
Thr	Ala	Asp	Thr 340	Pro	Met	Leu	Ala	Gly 345	Val	Ser	Glu	Tyr	Glu 350	Leu	Pro
Glu	Asp	Pro 355	Lys	Trp	Glu	Phe	Pro 360	Arg	Asp	Lys	Leu	Thr 365	Leu	Gly	Lys
Pro	Leu 370	Gly	Glu	Gly	CAa	Phe 375	Gly	Gln	Val	Val	Met 380	Ala	Glu	Ala	Val
Gly 385	Ile	Asp	Lys	Asp	190 390	Pro	Lys	Glu	Ala	Val 395	Thr	Val	Ala	Val	Lys 400
Met	Leu	ГЛа	Asp	Asp 405	Ala	Thr	Glu	Lys	Asp 410	Leu	Ser	Asp	Leu	Val 415	Ser
Glu	Met	Glu	Met 420	Met	ràa	Met	Ile	Gly 425		His	ГÀа	Asn	Ile 430	Ile	Asn
Leu	Leu	Gly 435	Ala	CÀa	Thr	Gln	Asp 440	Gly	Pro	Leu	Tyr	Val 445	Ile	Val	Glu
Tyr	Ala 450	Ser	ГÀа	Gly	Asn	Leu 455	Arg	Glu	Tyr	Leu	Arg 460	Ala	Arg	Arg	Pro
Pro 465	Gly	Met	Glu	Tyr	Ser 470	Tyr	Asp	Ile	Asn	Arg 475	Val	Pro	Glu	Glu	Gln 480
Met	Thr	Phe	Lys	Asp 485	Leu	Val	Ser	Сув	Thr 490	Tyr	Gln	Leu	Ala	Arg 495	Gly
Met	Glu	Tyr	Leu 500	Ala	Ser	Gln	Lys	Сув 505	Ile	His	Arg	Asp	Leu 510	Ala	Ala
Arg	Asn	Val 515	Leu	Val	Thr	Glu	Asn 520	Asn	Val	Met	Lys	Ile 525	Ala	Asp	Phe
Gly	Leu 530	Ala	Arg	Asp	Ile	Asn 535	Asn	Ile	Asp	Tyr	Tyr 540	ГЛа	Lys	Thr	Thr
Asn	Gly	Arg	Leu	Pro	Val	Lys	Trp	Met	Ala	Pro	Glu	Ala	Leu	Phe	Asp

545					550					555					560
Arg	Val	Tyr	Thr	His 565	Gln	Ser	Asp	Val	Trp 570	Ser	Phe	Gly	Val	Leu 575	Met
Trp	Glu	Ile	Phe 580	Thr	Leu	Gly	Gly	Ser 585	Pro	Tyr	Pro	Gly	Ile 590	Pro	Val
Glu	Glu	Leu 595	Phe	ГÀа	Leu	Leu	Lys 600	Glu	Gly	His	Arg	Met 605	Asp	ГÀз	Pro
Ala	Asn 610	Сла	Thr	Asn	Glu	Leu 615	Tyr	Met	Met	Met	Arg 620	Asp	СЛа	Trp	His
Ala 625	Val	Pro	Ser	Gln	Arg 630	Pro	Thr	Phe	Lys	Gln 635	Leu	Val	Glu	Asp	Leu 640
Asp	Arg	Ile	Leu	Thr 645	Leu	Thr	Thr	Asn	Glu 650	Glu	Tyr	Leu	Asp	Leu 655	Ser
Gln	Pro	Leu	Glu 660	Gln	Tyr	Ser	Pro	Ser 665	Tyr	Pro	Asp	Thr	Arg 670	Ser	Ser
CAa	Ser	Ser 675	Gly	Asp	Asp	Ser	Val 680	Phe	Ser	Pro	Asp	Pro 685	Met	Pro	Tyr
Glu	Pro 690	Cys	Leu	Pro	Gln	Tyr 695	Pro	His	Ile	Asn	Gly 700	Ser	Val	Lys	Thr
<210)> SI	EQ II	ои с	67											
<21	l > LF 2 > TY	ENGTI	H: 68												
<213	3 > OF	RGAN:	ISM:	Homo	sa]	piens	3								
< 400	D> SI	EQUEI	ICE:	67											
Met 1	Val	Ser	Trp	Gly 5	Arg	Phe	Ile	CAa	Leu 10	Val	Val	Val	Thr	Met 15	Ala
Thr	Leu	Ser	Leu 20	Ala	Arg	Pro	Ser	Phe 25	Ser	Leu	Val	Glu	Asp 30	Thr	Thr
Leu	Glu	Pro 35	Glu	Asp	Ala	Ile	Ser 40	Ser	Gly	Asp	Asp	Glu 45	Asp	Asp	Thr
Asp	Gly 50	Ala	Glu	Asp	Phe	Val 55	Ser	Glu	Asn	Ser	Asn 60	Asn	ГÀЗ	Arg	Ala
Pro 65	Tyr	Trp	Thr	Asn	Thr 70	Glu	Lys	Met	Glu	Lys 75	Arg	Leu	His	Ala	Val 80
Pro	Ala	Ala	Asn	Thr 85	Val	ГÀа	Phe	Arg	GÀa	Pro	Ala	Gly	Gly	Asn 95	Pro
Met	Pro	Thr	Met 100	Arg	Trp	Leu	Lys	Asn 105	Gly	Lys	Glu	Phe	Lys 110	Gln	Glu
His	Arg	Ile 115	Gly	Gly	Tyr	ГÀа	Val 120	Arg	Asn	Gln	His	Trp 125	Ser	Leu	Ile
Met	Glu 130	Ser	Val	Val	Pro	Ser 135	Asp	ГÀа	Gly	Asn	Tyr 140	Thr	CAa	Val	Val
Glu 145	Asn	Glu	Tyr	Gly	Ser 150	Ile	Asn	His	Thr	Tyr 155	His	Leu	Asp	Val	Val 160
Glu	Arg	Ser	Pro	His 165	Arg	Pro	Ile	Leu	Gln 170	Ala	Gly	Leu	Pro	Ala 175	Asn
Ala	Ser	Thr	Val 180	Val	Gly	Gly	Asp	Val 185	Glu	Phe	Val	Cys	Lys 190	Val	Tyr
Ser	Asp	Ala 195	Gln	Pro	His	Ile	Gln 200	Trp	Ile	Lys	His	Val 205	Glu	Lys	Asn
Gly	Ser 210	Lys	Tyr	Gly	Pro	Asp 215	Gly	Leu	Pro	Tyr	Leu 220	Lys	Val	Leu	Lys

His 225	Ser	Gly	Ile	Asn	Ser 230	Ser	Asn	Ala	Glu	Val 235	Leu	Ala	Leu	Phe	Asn 240
Val	Thr	Glu	Ala	Asp 245	Ala	Gly	Glu	Tyr	Ile 250	Cys	Lys	Val	Ser	Asn 255	Tyr
Ile	Gly	Gln	Ala 260	Asn	Gln	Ser	Ala	Trp 265	Leu	Thr	Val	Leu	Pro 270	Lys	Gln
Gln	Ala	Pro 275	Gly	Arg	Glu	Lys	Glu 280	Ile	Thr	Ala	Ser	Pro 285	Asp	Tyr	Leu
Glu	Ile 290	Ala	Ile	Tyr	Cys	Ile 295	Gly	Val	Phe	Leu	Ile 300	Ala	Cys	Met	Val
Val 305	Thr	Val	Ile	Leu	Cys 310	Arg	Met	Lys	Asn	Thr 315	Thr	Lys	Lys	Pro	Asp 320
Phe	Ser	Ser	Gln	Pro 325	Ala	Val	His	ГЛа	Leu 330	Thr	ГÀа	Arg	Ile	Pro 335	Leu
Arg	Arg	Gln	Val 340	Thr	Val	Ser	Ala	Glu 345	Ser	Ser	Ser	Ser	Met 350	Asn	Ser
Asn	Thr	Pro 355	Leu	Val	Arg	Ile	Thr 360	Thr	Arg	Leu	Ser	Ser 365	Thr	Ala	Asp
Thr	Pro 370	Met	Leu	Ala	Gly	Val 375	Ser	Glu	Tyr	Glu	Leu 380	Pro	Glu	Asp	Pro
382 Tàa	Trp	Glu	Phe	Pro	Arg 390	Asp	Lys	Leu	Thr	Leu 395	Gly	ГÀа	Pro	Leu	Gly 400
Glu	Gly	Сув	Phe	Gly 405	Gln	Val	Val	Met	Ala 410	Glu	Ala	Val	Gly	Ile 415	Asp
ГÀв	Asp	Lys	Pro 420	ГÀЗ	Glu	Ala	Val	Thr 425	Val	Ala	Val	ГÀа	Met 430	Leu	Lys
Asp	Asp	Ala 435	Thr	Glu	Lys	Asp	Leu 440	Ser	Asp	Leu	Val	Ser 445	Glu	Met	Glu
Met	Met 450	Lys	Met	Ile	Gly	Lys 455	His	Lys	Asn	Ile	Ile 460	Asn	Leu	Leu	Gly
Ala 465	Сув	Thr	Gln	Asp	Gly 470	Pro	Leu	Tyr	Val	Ile 475	Val	Glu	Tyr	Ala	Ser 480
Lys	Gly	Asn	Leu	Arg 485	Glu	Tyr	Leu	Arg	Ala 490	Arg	Arg	Pro	Pro	Gly 495	Met
Glu	Tyr	Ser	Tyr 500	Asp	Ile	Asn	Arg	Val 505	Pro	Glu	Glu	Gln	Met 510	Thr	Phe
Lys	Asp	Leu 515	Val	Ser	Cys	Thr	Tyr 520		Leu	Ala	Arg	Gly 525	Met	Glu	Tyr
Leu	Ala 530	Ser	Gln	Lys	Cys	Ile 535	His	Arg	Asp	Leu	Ala 540	Ala	Arg	Asn	Val
Leu 545	Val	Thr	Glu	Asn	Asn 550	Val	Met	Lys	Ile	Ala 555	Asp	Phe	Gly	Leu	Ala 560
Arg	Asp	Ile	Asn	Asn 565	Ile	Asp	Tyr	Tyr	Lys 570	Lys	Thr	Thr	Asn	Gly 575	Arg
Leu	Pro	Val	Lys 580	Trp	Met	Ala	Pro	Glu 585	Ala	Leu	Phe	Asp	Arg 590	Val	Tyr
Thr	His	Gln 595	Ser	Asp	Val	Trp	Ser 600	Phe	Gly	Val	Leu	Met 605	Trp	Glu	Ile
Phe	Thr 610	Leu	Gly	Gly	Ser	Pro 615	Tyr	Pro	Gly	Ile	Pro 620	Val	Glu	Glu	Leu
Phe 625	Lys	Leu	Leu	ГЛа	Glu 630	Gly	His	Arg	Met	Asp 635	Lys	Pro	Ala	Asn	Cys 640
Thr	Asn	Glu	Leu	Tyr	Met	Met	Met	Arg	Asp	Сла	Trp	His	Ala	Val	Pro

650 Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg Ile 660 Leu Thr Leu Thr Thr Asn Glu Ile 675 <210> SEQ ID NO 68 <211> LENGTH: 396 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 68 Met Val Ser Trp Gly Arg Phe Ile Cys Leu Val Val Val Thr Met Ala Thr Leu Ser Leu Ala Arg Pro Ser Phe Ser Leu Val Glu Asp Thr Thr Leu Glu Pro Glu Glu Pro Pro Thr Lys Tyr Gln Ile Ser Gln Pro Glu Val Tyr Val Ala Ala Pro Gly Glu Ser Leu Glu Val Arg Cys Leu Leu 50 $\,$ 60 $\,$ Lys Asp Ala Ala Val Ile Ser Trp Thr Lys Asp Gly Val His Leu Gly 65 7070757575 Pro Asn Asn Arg Thr Val Leu Ile Gly Glu Tyr Leu Gln Ile Lys Gly Ala Thr Pro Arg Asp Ser Gly Leu Tyr Ala Cys Thr Ala Ser Arg Thr 105 Val Asp Ser Glu Thr Trp Tyr Phe Met Val Asn Val Thr Asp Ala Ile 120 Ser Ser Gly Asp Asp Glu Asp Asp Thr Asp Gly Ala Glu Asp Phe Val Ser Glu Asn Ser Asn Asn Lys Arg Ala Pro Tyr Trp Thr Asn Thr Glu Lys Thr Glu Lys Arg Leu His Ala Val Pro Ala Ala Asn Thr Val Lys 170 Phe Arg Cys Pro Ala Gly Gly Asn Pro Met Pro Thr Met Arg Trp Leu Lys Asn Gly Lys Glu Phe Lys Gln Glu His Arg Ile Gly Gly Tyr Lys Val Arg Asn Gln His Trp Ser Leu Ile Met Glu Ser Val Val Pro Ser 215 Asp Lys Gly Asn Tyr Thr Cys Val Val Glu Asn Glu Tyr Gly Ser Ile Asn His Thr Tyr His Leu Asp Val Val Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn Ala Ser Thr Val Val Gly Gly 265 Asp Val Glu Phe Val Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile 280 Gln Trp Ile Lys His Val Glu Lys Asn Gly Ser Lys Tyr Gly Pro Asp Gly Leu Pro Tyr Leu Lys Val Leu Lys Ala Ala Gly Val Asn Thr Thr 310 315 Asp Lys Glu Ile Glu Val Leu Tyr Ile Arg Asn Val Thr Phe Glu Asp

-continued

Ala Gly Glu Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Ile Ser Phe His Ser Ala Trp Leu Thr Val Leu Pro Gly Ile Tyr Cys Ser Phe Ser Leu Gly Phe Phe Pro Phe Ser Trp Leu Thr Ala Ile Lys Leu Thr Gln 375 Leu Leu Ser Glu Met Ala Pro Phe Ile Leu Ala <210> SEQ ID NO 69 <211> LENGTH: 317 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 69 Met Val Ser Trp Gly Arg Phe Ile Cys Leu Val Val Val Thr Met Ala Thr Leu Ser Leu Ala Arg Pro Ser Phe Ser Leu Val Glu Asp Thr Thr Leu Glu Pro Glu Glu Pro Pro Thr Lys Tyr Gln Ile Ser Gln Pro Glu Val Tyr Val Ala Ala Pro Gly Glu Ser Leu Glu Val Arg Cys Leu Leu Lys Asp Ala Ala Val Ile Ser Trp Thr Lys Asp Gly Val His Leu Gly 65 70 75 80 Pro Asn Asn Arg Thr Val Leu Ile Gly Glu Tyr Leu Gln Ile Lys Gly Ala Thr Pro Arg Asp Ser Gly Leu Tyr Ala Cys Thr Ala Ser Arg Thr 105 Val Asp Ser Glu Thr Trp Tyr Phe Met Val Asn Val Thr Asp Ala Ile 120 Ser Ser Gly Asp Asp Glu Asp Asp Thr Asp Gly Ala Glu Asp Phe Val Ser Glu Asn Ser Asn Asn Lys Arg Ala Pro Tyr Trp Thr Asn Thr Glu 155 Lys Met Glu Lys Arg Leu His Ala Val Pro Ala Ala Asn Thr Val Lys Phe Arg Cys Pro Ala Gly Gly Asn Pro Met Pro Thr Met Arg Trp Leu Lys Asn Gly Lys Glu Phe Lys Gln Glu His Arg Ile Gly Gly Tyr Lys Val Arg Asn Gln His Trp Ser Leu Ile Met Glu Ser Val Val Pro Ser Asp Lys Gly Asn Tyr Thr Cys Val Val Glu Asn Glu Tyr Gly Ser Ile 230 Asn His Thr Tyr His Leu Asp Val Val Glu Arg Ser Pro His Arg Pro 250 Ile Leu Gln Ala Gly Leu Pro Ala Asn Ala Ser Thr Val Val Gly Gly 265 Asp Val Glu Phe Val Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile 280 Gln Trp Ile Lys His Val Glu Lys Asn Gly Ser Lys Tyr Gly Pro Asp 295 Gly Leu Pro Tyr Leu Lys Val Leu Lys Val Arg Thr Phe 310

<210> SEQ ID NO 70 <211> LENGTH: 266 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 70 Met Val Ser Trp Gly Arg Phe Ile Cys Leu Val Val Val Thr Met Ala Thr Leu Ser Leu Ala Arg Pro Ser Phe Ser Leu Val Glu Asp Thr Thr Leu Glu Pro Glu Glu Pro Pro Thr Lys Tyr Gln Ile Ser Gln Pro Glu Val Tyr Val Ala Ala Pro Gly Glu Ser Leu Glu Val Arg Cys Leu Leu Lys Asp Ala Ala Val Ile Ser Trp Thr Lys Asp Gly Val His Leu Gly 65 70707575 Pro Asn Asn Arg Thr Val Leu Ile Gly Glu Tyr Leu Gln Ile Lys Gly 85 90 95 Ala Thr Pro Arg Asp Ser Gly Leu Tyr Ala Cys Thr Ala Ser Arg Thr Val Asp Ser Glu Thr Trp Tyr Phe Met Val Asn Val Thr Asp Ala Ile 120 Ser Ser Gly Asp Asp Glu Asp Asp Thr Asp Gly Ala Glu Asp Phe Val 135 Ser Glu Asn Ser Asn Asn Lys Arg Ala Pro Tyr Trp Thr Asn Thr Glu Lys Met Glu Lys Arg Leu His Ala Val Pro Ala Ala Asn Thr Val Lys 170 Phe Arg Cys Pro Ala Gly Gly Asn Pro Met Pro Thr Met Arg Trp Leu 185 Lys Asn Gly Lys Glu Phe Lys Gln Glu His Arg Ile Gly Gly Tyr Lys Val Arg Asn Gln His Trp Ser Leu Ile Met Glu Ser Val Val Pro Ser Asp Lys Gly Asn Tyr Thr Cys Val Val Glu Asn Glu Tyr Gly Ser Ile 235 Asn His Thr Tyr His Leu Asp Val Val Gly Glu Ser Ala Ser Pro Arg Val Ala Ala Ala Tyr Gln Pro Ile Leu Ala <210> SEQ ID NO 71 <211> LENGTH: 336 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEOUENCE: 71 caggtgaagc tgcaggagtc tggcgctgag ttggtgaaac ctggggcttc agtgaagata teetgeaagg ettetggeta catetteact gaccatgete tteactgggt gaggeagaag 120 cctgaacagg gcctggaatg gattgggtat atttttcccg gaaatggtaa tattgagtac aatgagaagt tcaagggcaa ggccacactg actgcagaca aatcctccag tactgcctac 240 atgcagetea acageetgae atetggagat tetgeaatgt atttetgtaa aaagatggae 300 336 tactggggcc aagggaccac ggtcaccgtc tcctca

-continued

<210> SEQ ID NO 72 <211> LENGTH: 111 <212> TYPE: PRT <213 > ORGANISM: Mus musculus <400> SEQUENCE: 72 Val Lys Leu Gln Glu Ser Gly Ala Glu Leu Val Lys Pro Gly Ala Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ile Phe Thr Asp His Ala Leu His Trp Val Arg Gln Lys Pro Glu Gln Gly Leu Glu Trp Ile Gly Tyr Ile Phe Pro Gly Asn Gly Asn Ile Glu Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Asn Ser Leu Thr Ser Gly Asp Ser Ala Met Tyr Phe Cys Lys Lys Met Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser <210> SEO ID NO 73 <211> LENGTH: 336 <212> TYPE: DNA <213 > ORGANISM: Mus musculus <400> SEOUENCE: 73 caggtgaagc tgcaggagtc tggcgctgag ttggtgaaac ctggggcttc agtgaagatc 60 tcctgcaagg cttctggtta caccttcact gaccattcta ttcactgggt gaagcagaag 120 cctggacagg gcctagaatg gattggatat ctttttcccg gaaatggtaa ttttgaatat 180 aatgagaaat tcaagggcaa ggccacactg actgcagaca aatcctccag cactgcctac atgcacctca acagcctgac atctgaggat tctgcagtgt atttctgtaa aaagatggac 300 tactggggcc aagggaccac ggtcaccgtc tcctca 336 <210> SEQ ID NO 74 <211> LENGTH: 111 <212> TYPE: PRT <213 > ORGANISM: Mus musculus <400> SEQUENCE: 74 Val Lys Leu Gln Glu Ser Gly Ala Glu Leu Val Lys Pro Gly Ala Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp His Ser Ile His Trp Val Lys Gln Lys Pro Gly Gln Gly Leu Glu Trp Ile Gly 40 Tyr Leu Phe Pro Gly Asn Gly Asn Phe Glu Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met His Leu Asn Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Lys Lys Met Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 100 105

```
<210> SEQ ID NO 75
<211> LENGTH: 336
<212> TYPE: DNA
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 75
caggttcagc tgcagcagtc cgacgctgag ttggtgaaac ctggggcttc agtgaagata
                                                                      60
teetgeaggg ettetggeta cacetteact gaceatteta tteactgggt gaageagcag
cctggccagg gcctggaatg gatcggatat atttttcccg gaaatggaaa tattgaatac
aatgacaaat tcaagggcaa ggccacactg actgcagaca aatcctccgg cactgcctac
atgcagctca acagcctgac atctgaggat tctgcagtgt atttctgtaa aaggatgggg
tactggggtc aaggaacctc agtcaccgtc tcctca
<210> SEQ ID NO 76
<211> LENGTH: 111
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 76
Val Gln Leu Gln Gln Ser Asp Ala Glu Leu Val Lys Pro Gly Ala Ser
Val Lys Ile Ser Cys Arg Ala Ser Gly Tyr Thr Phe Thr Asp His Ser
                               25
Ile His Trp Val Lys Gln Gln Pro Gly Gln Gly Leu Glu Trp Ile Gly
                         40
Tyr Ile Phe Pro Gly Asn Gly Asn Ile Glu Tyr Asn Asp Lys Phe Lys
Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Gly Thr Ala Tyr Met
Gln Leu Asn Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Lys
                                   90
Arg Met Gly Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser
<210> SEQ ID NO 77
<211> LENGTH: 360
<212> TYPE: DNA
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 77
caggtcaagc tgcaggagtc tggacctgaa ctggtaaagc ctggggcttc agtgaagatg
tcctgcaagg cttctggata cacattcact aactatgtta tacactgggt gaagcaaaag
cctgggcagg gccttgagtg gattggatat attaatcctt acaatgatgg ctctaagtac
aatgagaagt tcaaaggcaa ggcctcactg acttcagaca aatcctccag cacagcctac
                                                                     240
atggagetea geageetgae etetgaggae tetgeggtet attactgtge aagacatete
                                                                     300
gctaatacct actactt tgactactgg ggccaaggga ccacggtcac cgtctcctca
                                                                     360
<210> SEO TD NO 78
<211> LENGTH: 119
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEOUENCE: 78
Val Lys Leu Gln Glu Ser Gly Pro Glu Leu Val Lys Pro Gly Ala Ser
       5
                            10
```

-continued

Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr Val Ile His Trp Val Lys Gln Lys Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile Asn Pro Tyr Asn Asp Gly Ser Lys Tyr Asn Glu Lys Phe Lys Gly Lys Ala Ser Leu Thr Ser Asp Lys Ser Ser Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg His Leu Ala Asn Thr Tyr Tyr Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser <210> SEQ ID NO 79 <211> LENGTH: 336 <212> TYPE: DNA <213 > ORGANISM: Mus musculus <400> SEOUENCE: 79 caggicaagc tgcaggagic tggcgctgag ttggtgaaac ctggggctic agtgaagatc 60 teetgeaagg ettetggeta cacetteaet gaecatteta tteaetgggt gaageagaag 120 cctggacagg gcctagaatg gattggatat ctttttcccg gaaatggtaa ttttgagtac 180 aatgaaaaat tcaagggcaa ggccacactg actgcagaca aatcctccag cactgtctac atgtacctca acagcctgac atctgaggat tctgcagtgt atttctgtaa aaggatgggg 300 tactggggcc aagggaccac ggtcaccgtc tcctca 336 <210> SEQ ID NO 80 <211> LENGTH: 111 <212> TYPE: PRT <213> ORGANISM: Mus musculus <400> SEQUENCE: 80 Val Lys Leu Gln Glu Ser Gly Ala Glu Leu Val Lys Pro Gly Ala Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp His Ser Ile His Trp Val Lys Gln Lys Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr Leu Phe Pro Gly Asn Gly Asn Phe Glu Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Val Tyr Met Tyr Leu Asn Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Lys Arg Met Gly Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 105 <210> SEQ ID NO 81 <211> LENGTH: 357 <212> TYPE: DNA <400> SEQUENCE: 81

<213> ORGANISM: Mus musculus

-continued

```
gtgaagetge aggagtetgg acetgaactg gtaaageetg gggetteagt gaagatgtee
                                                                       60
tgcaaggett etggatacae atteactaae tatgttatae aetgggtgaa gcaaaageet
                                                                      120
gggcagggcc ttgagtggat tggatatatt aatccttaca atgatggctc taagtacaat
gagaagttca aaggcaaggc ctcactgact tcagacaaat cctccagcac agcctacatg
                                                                      240
gageteagea geetgaeete tgaggaetet geggtetatt aetgtgeaag acateteget
                                                                      300
aatacctact actactttga ctactggggc caaggcacca ctctcacagt ctcctca
                                                                      357
<210> SEQ ID NO 82
<211> LENGTH: 120
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 82
Gln Val Gln Leu Gln Glu Ser Gly Pro Glu Leu Val Lys Pro Gly Ala
Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr
Val Ile His Trp Val Lys Gln Lys Pro Gly Gln Gly Leu Glu Trp Ile
Gly Tyr Ile Asn Pro Tyr Asn Asp Gly Ser Lys Tyr Asn Glu Lys Phe
Lys Gly Lys Ala Ser Leu Thr Ser Asp Lys Ser Ser Ser Thr Ala Tyr
Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
Ala Arg His Leu Ala Asn Thr Tyr Tyr Tyr Phe Asp Tyr Trp Gly Gln
           100
                                105
Gly Thr Thr Leu Thr Val Ser Ser
       115
<210> SEQ ID NO 83
<211> LENGTH: 342
<212> TYPE: DNA
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 83
gatgttttga tgacccaaac tccactctcc ctgcctgtca gtcttggaga tcaagcctcc
                                                                       60
atctcttgca gatctagtca gagcattgta catagtaatg gaaacaccta tttagaatgg
tacctgcaga aaccaggcca gtctccaaag ctcctgatct acaaagtttc caaccgattt
totggggtoc cagacaggtt cagtggcagt ggatcaggga cagatttcac actcaagatc
agcagagtgg aggetgagga tetgggagtt tattactget tteaaggtte acatgtteet
cctacgttcg gtgctgggac caagctggag ctgaaacggg ct
                                                                      342
<210> SEQ ID NO 84
<211> LENGTH: 113
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 84
Asp Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly
Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser
                                25
```

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser

	concinued
35 40	45
Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe 50 60	Ser Gly Val Pro
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe 65 70 75	Thr Leu Lys Ile 80
Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr 85 90	Cys Phe Gln Gly 95
Ser His Val Pro Pro Thr Phe Gly Ala Gly Thr Lys	Leu Glu Leu Lys 110
Arg	
<210> SEQ ID NO 85 <211> LENGTH: 324 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 85	
gacatccaga tgactcagtc tccagcctcc ctatctgcat ctg	tgggaga aactgtcacc 60
atcacatgtc gaacaactga aaatatttac agttattttg tat	ggtetea geagagaeag 120
ggaaaatctc ctcagctccg ggtctataat gcaaaatcct tag	cagaagg tgtgccatca 180
agtttcaatg tcagtgtatc aggcacacag ttttctctga aga	ccaatag cctgcagcct 240
gaagattttg ggacttatca ctgtcaacac cattatggta ctc	egtacac gtteggaggg 300
gggaccaggc tggaaataag acgg	324
<210> SEQ ID NO 86 <211> LENGTH: 108 <212> TYPE: PRT <213> ORGANISM: Mus musculus <400> SEQUENCE: 86	
Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser	Ala Ser Val Glv
1 5 10	15
Glu Thr Val Thr Ile Thr Cys Arg Thr Thr Glu Asn 20 25	Ile Tyr Ser Tyr 30
Phe Val Trp Ser Gln Gln Arg Gln Gly Lys Ser Pro 35 40	Gln Leu Arg Val 45
Tyr Asn Ala Lys Ser Leu Ala Glu Gly Val Pro Ser 50 55 60	Ser Phe Asn Val
Ser Val Ser Gly Thr Gln Phe Ser Leu Lys Ile Asn 65 70 75	Ser Leu Gln Pro 80
Glu Asp Phe Gly Thr Tyr His Cys Gln His His Tyr 85 90	Gly Thr Pro Tyr 95
Thr Phe Gly Gly Gly Thr Arg Leu Glu Ile Arg Arg	
<210> SEQ ID NO 87 <211> LENGTH: 336 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 87	
gacattgtgc tgacacagtc tcctgcttcc ttagctgtat ctc	eggggea gagggeeace 60
atotogtaca gggocagoaa aagtgtoagt acatotggot ata	gttatat gcactggaac 120
caacagaaac caggacagcc acccagactc ctcatctatc ttg	tatccaa cctagaatct 180

-continued	
ggggtccctg ccaggttcag tggcagtggg tctgggacag acttcaccct caacatc	ccat 240
cctgtggagg aggaggatgc tgcaacctat tactgtcagc acattaggga gcttaca	acgt 300
tcggaggggg gcaccaagct ggaaatcaaa cggaga	336
<210> SEQ ID NO 88 <211> LENGTH: 112 <212> TYPE: PRT <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 88	
Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gl	Ly
Gln Arg Ala Thr Ile Ser Tyr Arg Ala Ser Lys Ser Val Ser Thr Se 20 25 30	er
Gly Tyr Ser Tyr Met His Trp Asn Gln Gln Lys Pro Gly Gln Pro Pr 35 40 45	co
Arg Leu Leu Ile Tyr Leu Val Ser Asn Leu Glu Ser Gly Val Pro Al 50 55 60	La
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile Hi	
Pro Val Glu Glu Asp Ala Ala Thr Tyr Tyr Cys Gln His Ile Ar 85 90 95	rg
Glu Leu Thr Arg Ser Glu Gly Gly Thr Lys Leu Glu Ile Lys Arg Ar 100 105 110	rg
<210> SEQ ID NO 89 <211> LENGTH: 327 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 89	
gacatcaaga tgacccagtc tccatcctcc atgtatgcat cgctgggaga gagagtc	cact 60
atcacttgca aggcgagtca ggacattaaa agctatttaa gctggtacca gcagaaa	acca 120
tggaaatete etaagaeeet gatetattat geaacaaget tggeagatgg ggteeea	atca 180
agattcagtg gcagtggatc tgggcaagat tattctctaa ccatcagcag cctggag	gtct 240
gacgatacag caacttatta ctgtctacag catggtgaga gcccgtacac gttcgga	aggg 300
gggaccaagc tggaaataaa acgggct	327
<210> SEQ ID NO 90 <211> LENGTH: 108 <212> TYPE: PRT <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 90	
Asp Ile Lys Met Thr Gln Ser Pro Ser Ser Met Tyr Ala Ser Leu Gl 1 10 15	Ly
Glu Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile Lys Ser Ty 20 25 30	7 T
Leu Ser Trp Tyr Gln Gln Lys Pro Trp Lys Ser Pro Lys Thr Leu Il 35 40 45	Le
Tyr Tyr Ala Thr Ser Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gl	Ly
Ser Gly Ser Gly Gln Asp Tyr Ser Leu Thr Ile Ser Ser Leu Glu Se 65 70 75 80	
Asp Asp Thr Ala Thr Tyr Tyr Cys Leu Gln His Gly Glu Ser Pro Ph	ne

```
90
                                                        95
Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys Arg
           100
                                105
<210> SEQ ID NO 91
<211> LENGTH: 327
<212> TYPE: DNA
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 91
gatgttgtgc taactcagtc tcctgccacc ctgtctgtga ctccaggaga tagagtcagt
ctttcctgca gggccagcca aaatattggc aactacctac actggtatca acagaaatca
catgagtete caaggettet cateaagtat getteecagt ceatetetgg gateecetee
aggttcagtg gcagtggatc agtcacagat ttcactctca atatcaacag tgtggagact
gaagattttg gaatgtattt ctgtcaacag agtgacacct ggcctctcac gttcggtgct
                                                                     300
                                                                     327
gggaccaagc tggagctgaa acgggct
<210> SEQ ID NO 92
<211> LENGTH: 108
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEOUENCE: 92
Asp Val Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Val Thr Pro Gly
                                   10
Asp Arg Val Ser Leu Ser Cys Arg Ala Ser Gln Asn Ile Gly Asn Tyr
Leu His Trp Tyr Gln Gln Lys Ser His Glu Ser Pro Arg Leu Leu Ile
                           40
Lys Tyr Ala Ser Gln Ser Ile Ser Gly Ile Pro Ser Arg Phe Ser Gly
                     55
Ser Gly Ser Val Thr Asp Phe Thr Leu Asn Ile Asn Ser Val Glu Thr
Glu Asp Phe Gly Met Tyr Phe Cys Gln Gln Ser Asp Thr Trp Pro Leu
Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Arg
           100
<210> SEQ ID NO 93
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 93
Thr Phe Thr Asp His Ser Ile His
               5
<210> SEQ ID NO 94
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 94
Thr Phe Thr Asn Tyr Val Ile His
<210> SEQ ID NO 95
<211> LENGTH: 8
```

```
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 95
Ile Phe Thr Asp His Ala Leu His
1 5
<210> SEQ ID NO 96
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 96
Tyr Ile Phe Pro Gly Asn Gly Asn Ile Glu Tyr Asn Asp Lys Phe Lys 1 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Gly
<210> SEQ ID NO 97
<211> LENGTH: 17
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 97
Tyr Leu Phe Pro Gly Asn Gly Asn Phe Glu Tyr Asn Glu Lys Phe Lys
                           10
Gly
<210> SEQ ID NO 98
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 98
Tyr Ile Asn Pro Tyr Asn Asp Gly Ser Lys Tyr Asn Glu Lys Phe Lys
                     10
Gly
<210> SEQ ID NO 99
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 99
Tyr Ile Phe Pro Gly Asn Gly Asn Ile Glu Tyr Asn Glu Lys Phe Lys
Gly
<210> SEQ ID NO 100
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 100
Lys Arg Met Gly Tyr
<210> SEQ ID NO 101
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 101
```

```
Lys Lys Met Asp Tyr
<210> SEQ ID NO 102
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 102
Ala Arg His Leu Ala Asn Thr Tyr Tyr Tyr Phe Asp Tyr
<210> SEQ ID NO 103
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 103
Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu
          5
                                  10
<210> SEQ ID NO 104
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEOUENCE: 104
Arg Thr Thr Glu Asn Ile Tyr Ser Tyr Phe Val
             5
<210> SEQ ID NO 105
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 105
Arg Ala Ser Lys Ser Val Ser Thr Ser Gly Tyr Ser Tyr Met His
1 5
                                   1.0
<210> SEQ ID NO 106
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 106
Lys Ala Ser Gln Asp Ile Lys Ser Tyr Leu Ser
<210> SEQ ID NO 107
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 107
Arg Ala Ser Gln Asn Ile Gly Asn Tyr Leu His
       5
                                   10
<210> SEQ ID NO 108
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 108
Lys Val Ser Asn Arg Phe Ser
```

```
<210> SEQ ID NO 109
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 109
Asn Ala Lys Ser Leu Ala Glu
<210> SEQ ID NO 110
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 110
Leu Val Ser Asn Leu Glu Ser
<210> SEQ ID NO 111
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 111
Tyr Ala Thr Ser Leu Ala Asp
<210> SEQ ID NO 112
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 112
Tyr Ala Ser Gln Ser Ile Ser
1 5
<210> SEQ ID NO 113
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 113
Phe Gln Gly Ser His Val Pro Pro Thr
<210> SEQ ID NO 114
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 114
Gln His His Tyr Gly Thr Pro Tyr Thr
1
<210> SEQ ID NO 115
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 115
Gln His Ile Arg Glu Leu Thr Arg Ser
1 5
```

```
<210> SEQ ID NO 116
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 116
Leu Gln His Gly Glu Ser Pro Phe Thr
<210> SEQ ID NO 117
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 117
Gln Gln Ser Asp Thr Trp Pro Leu Thr
1 5
<210> SEQ ID NO 118
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 118
Asp His Ala Leu His
<210> SEQ ID NO 119
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 119
Asp His Ser Ile His
<210> SEQ ID NO 120
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 120
Asn Tyr Val Ile His
<210> SEQ ID NO 121
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 121
Ile Phe Pro Gly Asn Gly Asn Ile Glu
<210> SEQ ID NO 122
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 122
Leu Phe Pro Gly Asn Gly Asn Phe Glu
1 5
<210> SEQ ID NO 123
<211> LENGTH: 9
```

```
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 123
Ile Asn Pro Tyr Asn Asp Gly Ser Lys
1 5
<210> SEQ ID NO 124
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 124
His Leu Ala Asn Thr Tyr Tyr Tyr Phe Asp Tyr
<210> SEQ ID NO 125
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 125
Ser Asn Gly Asn Thr
<210> SEQ ID NO 126
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 126
Glu Asn Ile Tyr Ser
<210> SEQ ID NO 127
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 127
Thr Ser Gly Tyr Ser
<210> SEQ ID NO 128
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 128
Gln Asp Ile Lys Ser
<210> SEQ ID NO 129
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 129
Gln Asn Ile Gly Asn
<210> SEQ ID NO 130
<211> LENGTH: 4654
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
```

ggeggggggggggggggggggggggggggggggggggg
cctggcccgg cgcggcgact gctctccggg ctggcggggg ccggccgcga gccccgggggg 180 ccccgaggcc gcagcttgcc tgcgcgctct gagccttcgc aactcgcgag caaagtttgg 240 tggaggcaac gccaagcctg agtcctttct tcctctcgtt ccccaaatcc gagggcagcc 300 cgcggggcgtc atgcccgcgc tcctccgcag cctggggtac gcgtgaagcc cgggaggctt 360 ggcgccggcg aagacccaag gaccactctt ctgcgtttgg agttgctccc cgcaaccccg 420 ggctcgtcgc tttctccatc ccgacccacg cggggcggg ggacaacaca ggtcgcggag 480 gaggcttgaa ggcattgcgc gtagtccatg cccgtagagg aagtggcagca gcgggggag 480 gcaggctgaa ggcattgcgc gtagtccatg cccgtagagg aagtgtgcag atgggattaa 600 cgtccacatg gagatatgga ggagtccatg cccgtagagg aagtgtgcag atgggattaa 600 cgtccacatg gagatatgga gtggtcacca tggcaacctt gtcctggcc cggccctcct 720 tcagtttagt tgaggatacc acattagagc cagaaggagc accaaccaaa taccaaaatct 780 ctcaaccaga agtgtacgtg gtggcacaa ggggagtcgc agaggtgcgc tgcctgttga 840 aagatgccgc cgtgatcagt tggactaagg atggggtca cttggggccc aacaatagga 900 cagtgcttat tggggagtac ttgcagcaag gggagtcgc actggggcc aacaatagga 900 cagtgcttat tggcggagtac ttgcagataa agggggcaca gcctagagac tccggcctct 960 atgcttgtac tgccagtagg actgtagaca gtgaaacttg gtacttcatg gtgaatgtca 1020 cagaagccac ctcatccgga gatgatgaga atgacacca cacagaaaaag atggaaaagc 1140 ggctccatgc tgtgcctgcg gccaacactg tcaagtttcg ctgccagcc ggggggaacc 1200 caatgccaac catgcggtgg ctgaaaaacg ggaaggatt taagcaggag catcgcattg 1220 caatgccaac catgcggtgg ctgaaaaacg ggaaggatt taagcaggag catcgcattg 1220 acaagggaaa ttatacctgt gtagtggag atgaatagg gcccattat ggaaagtgtg gtccatctg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacg gcccattat ggaaagtgt gtccatct 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacg gcccattat ggaaagtgt gtccatct 1320
tggaggcaac gcaagcttgcc tgcggcgctct gaggcttcgc aactegcgag caaagtttgg 240 tggaggcaac gccaagcctg agtcetttet tectetegtt eccaaatee gagggcagee 300 egeggggcgtc atgeeegege tectecgcag ectggggtae gegtgaagee eggagaggett 360 ggegeeggeg aagacccaag gaccactett etgegtttgg agttgeteee egeaaceeeg 420 ggetegtege tttetecate ecgaccaecg eggggegegg ggacaacacae ggtegeggag 480 gaggettgcc atteaagtga etgeageage ageggaggeg ecteggttee tgageccaec 540 geaggettgaa ggeattgege gtagtecatg ecegtagagg aagtgtgeag atgggattaa 600 egtecacatg gagatatgga agaggacegg ggattggtae egtaaceatg gteagetggg 660 gtegttteat etgeetggte gtggteacea tggeaacett gteeetggee eggeeteet 720 teagtttagt tgaggataee acattagage eagaaggee accaaceaaa taccaaatet 780 etcaaceaga agtgtacgtg getgeecaag gggagteget agaggtgege tgeetgttga 840 aagatgeege egtgateagt tggactaagg atggggtgea ettggggee accaacaaa tecgaaatet 900 eagtgettat tggggagtae ttgeagtaa aggggeecae geetagagae teeggeetet 960 atgetttat tggeggagtae ttgeagataa agggegeeae geetagagae teeggeetet 960 atgettgtae tgecagtagg actgtagaca gtgaaacetg gtaettetatg gtgaatgtea 1020 eagatgecat eteateegga gatgatgagg atgaeacega tggtgeggaa gattttgtea 1080 gtgagaacag taacaacaag agagcaccat actggaccaa eacagaaaag atggaaaage 1140 ggetecatge tgtgeetgeg gecaacactg teaagtteg etgeecagee ggggggaace 1200 eaatgecaac catgeggtgg etgaaaaacg ggaaggagtt taagcaggag categeattg 1220 eaatgecaac catgeggtgg etgaaaaacg ggaaggagtt taagcaggag categeattg 1220 eaatgecaac catgeggtgg etgaaaaacg ggaaggagtt taagcaggag categeattg 1220 acaagggaaa ttatacctgt gtagtggaga acgactatta ggaaagtgg gteceatetg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacgg geeteattat ggaaagtgg gteceatetg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacgg geeteattat ggaaagtgg gteceatetg 1320
tggaggcaac gccaagcctg agtcetttet teetetegtt ecceaaatee gagggcagee 300 egegggegte atgeeegee teeteegeag ectgggtae gegtgaagee egggaggett 360 ggegeeggeg aagaceeaag gaccaetett etgegtttgg agttgeteee eggaaceeeg 420 ggetegtege ttteteeate eegaceeaeg eggggeggg ggacaacaca ggtegeggag 480 gaaggettgee atteaagtga etgeageag ageggaageg eeteggttee tgageeeaee 540 geaggettgee atteaagtga etgeageag ageggaageg eeteggttee tgageeeaee 540 geaggettgaa ggeattgege gtagteeatg eeggaagegg eeteggttee tgageeeaee 540 geaggettgaa ggaatatgga agaggaeegg ggaattggtae eggaaceate gteagettggg 660 gtegttteat etgeetggte gtggteacea tggeaaeett gteeetggee eggeeeteet 720 teagtttagt tgaggataee acattagage eagaagagee accaaceaaa taccaaatet 780 etcaaceaga agtgtaegtg getggeeeag ggagteget agaggtgee tgeetgttga 840 aagaatgeege egtgateagt tggactaagg atggagteea ettggggeee aacaaataagga 900 eagtgettat tggggagtae ttgeagataa agggegeeae geetagagae teeggeetet 960 atgettgae tgeeagtagg actgtagaea gtgaaaettg gtaetteatg gtgaatgtea 1020 eagaatgeeat eteaaceaga gaatgatgag atgaaceega tggtgeggaa gattttgtea 1020 eagaatgeeat eteaaceaga agageaceeat actggaeeaa eacagaaaag aggggggaaee 1200 eaatgeeaae eatgeggtgg geeaacaeetg teaagttteg etgeeeagee ggggggaace 1200 eaatgeeaae eatgeggtgg etgaaaaaeg ggaaggagtt taageaggag eategeatg 1260 gagggetaeaa ggtaegaaa eagacaeae eatgeggtgg etgaaaaaeg ggaaggagtt taageaggag eategeattg 1260 gagggetaeaa ggtaegaaae eagacaetgga geeteatata ggaaagtgtg gteecatetg 1320 acaaggggaaa ttataacetg gtaagtggaa atgaaaaegg geeteatata ggaaagtgtg gteecatetg 1320 acaaggggaaa ttataacetg gtaagtggaa atgaataeeg ggaaggagaa atgaaaaeg acaaggagaacaacaaaagaagaggagaacaaaaaaaa
cgcggggcgtc atgcccgcg tcctccgcag cctggggtac gcgtgaagcc cgggaggctt 360 ggcgccggcg aagacccaag gaccactctt ctgcgtttgg agttgctccc cgcaaccccg 420 ggctcgtcgc tttctccatc ccgaccacg cggggcgcg ggacaacaca ggtcgcggag 480 gacggttgcc attcaagtga ctgcagcag agcggcggcg cctcggttcc tgagcccacc 540 gcaggctgaa ggcattgcgc gtagtccatg cccgtagagg aagtgtgcag atgggattaa 600 cgtccacatg gagatatgga agaggaccgg ggattggtac cgtaaccatg gtcagctggg 660 gtcgtttcat ctgcctggtc gtggtcacca tggcaacctt gtccctggcc cggccctcct 720 tcagtttagt tgaggatacc acattagagc cagaagagc accaaccaaa taccaaatct 780 ctcaaccaga agtgtacgt ggctgcccag gggagtcgct agaggtgcc cgcgtttga 840 aagatgccgc cgtgatcagt tggactaagg atggggtgca cttggggccc aacaatagga 900 cagtgcttat tggggagtac ttgcagataa agggggccac gcctagagac tccggcctct 960 atgcttgac tgccagtagg actgtagaga atggaccac gcctagagac tccggcctct 1020 cagatgccat ctcatccgga gatgatgaga atgacacca cacagaaaaga gattttgtca 1020 cagatgccat ctcatccgga gatgatgaga atgacacca cacagaaaaga atggaaaagc 1140 ggctccatgc tgtgcctgcg gccaaccactg tcaagttcg ctgcccagc ggggggaacc 1200 caatgccaac catgcggtgg ctgaaaaacg ggaaggagt taagcaagag catcgcattg 1260 gaggctacaa ggtacgaaa cagaaaaac cagcactgga gcctcattat ggaaagtgtg gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaa atgaaaacg gcctcattat ggaaagtgtg gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaa atgaaaacg gtccatcat cacacgtacc 1380
ggcgccggcg aagacccaag gaccactctt ctgcgtttgg agttgctccc cgcaaccccg 420 ggctcgtcgc tttctccatc ccgaccacg cggggcggg ggacaacaca ggtcgggag 480 gagcgttgcc attcaagtga ctgcagcagc agcggcagcg cctcggttcc tgagcccacc 540 gcaggctgaa ggcattgcg gtagtccatg cccgtagagg aagtgtgcag atgggattaa 600 cgtccacatg gagatatgga agaggaccgg ggattggtac cgtaaccatg gtcagctggg 660 gtcgtttcat ctgcctggtc gtggtcacca tggcaacctt gtccctggcc cggccctcct 720 tcagtttagt tgaggatacc acattagagc cagaaggagc accaaccaaa taccaaatct 780 ctcaaccaga agtgtacgtg gctgcgccag gggagtcgct agaggtgcgc tgcctgttga 840 aagatgccgc cgtgatcagt tggactaagg atggggtgca cttggggccc aacaatagga 900 cagtgcttat tggggagtac ttgcagataa agggggccac gcctagagac tccggcctct 960 atgcttgac tgccagtagg actgtagaca gtgaaacttg gtacttcatg gtgaatgtca 1020 cagatgccat ctcatccgga gatgatgag atgacacca cacagaaaaa atggaaaagc 1140 ggctccatgc tgtgcctgcg gccaaccactg tcaagttcg ctgccagca ggggggaacc catcgcacc catcgcgcacc cacaaccaca catgcggtg ctgaaaaacc ggaaggagtt taagcaaga catcgcattg 1260 gaggctacaa ggtacgaaa cagacaccac catgcggtg ctgaaaaacc ggaaggagtt taagcaggag catcgcattg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacg gtccattat ggaaagtgtg gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacg gtccatcaat cacacgtacc 1380
ggctcgtcgc tttctccatc ccgacccacg cggggcgcgg ggacaacaca ggtcgcggag 480 gagcgttgcc attcaagtga ctgcagcagc agcggcagcg cctcggttcc tgagcccacc 540 gcaggctgaa ggcattgcgc gtagtccatg cccgtagagg aagtgtgcag atgggattaa 600 cgtccacatg gagatatgga agaggaccgg ggattggtac cgtaaccatg gtcagctggg 660 gtcgtttcat ctgcctggtc gtggtcacca tggcaacctt gtccctggcc cggccctcct 720 tcagtttagt tgaggatacc acattagagc cagaagagcc accaaccaaa taccaaatct 780 ctcaaccaga agtgtacgtg gctgcgcag ggagtcgct agaggtgcgc tgcctgttga 840 aagatgccgc cgtgatcagt tggactaagg atggggtgca cttggggccc aacaatagga 900 cagtgcttat tggggagtac ttgcagataa agggcgccac gcctagagac tccggcctct 960 atgcttgtac tgccagtagg actgtagaca gtgaaacttg gtacttcatg gtgaatgtca 1020 cagatgccat ctcatccgga gatgatgagg atgacacca cacagaaaag atggaaaagc 1140 ggctccatgc tgtgcctgcg gccaacactg tcaagtttcg ctgcccagcc ggggggaacc 1200 caatgccaac catgcggtgg ctgaaaaacg ggaaggagt taagcagaa gatcgcattg 1260 gaggctacaa ggtacgaac cagcactgga gcctcattat ggaaagtgtg gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacgg gtccatcaat cacacgtacc 1380
gagcgttgcc attcaagtga ctgcagcagc agcggcagcg cctcggttcc tgagcccacc 540 gcaggctgaa ggcattgcgc gtagtccatg cccgtagagg aagtgtgcag atgggattaa 600 cgtccacatg gagatatgga agaggaccgg ggattggtac cgtaaccatg gtcagctggg 660 gtcgtttcat ctgcctggtc gtggtcacca tggcaacctt gtccctggcc cggccctcct 720 tcagtttagt tgaggatacc acattagagc cagaagagcc accaaccaaa taccaaatct 780 ctcaaccaga agtgtacgtg gctgcgccag gggagtcgct agaggtgcgc tgcctgttga 840 aagatgccgc cgtgatcagt tggactaagg atggggtgca cttggggccc aacaatagga 900 cagtgcttat tggggagtac ttgcagataa agggcgccac gcctagagac tccggcctct 960 atgcttgtac tgccagtagg actgtagaga gtgaacctg gtacttcatg gtgaatgtca 1020 cagatgccat ctcatccgga gatgatgag atgacaccga tggtgcggaa gattttgtca 1080 gtgagaacag taccaacaag agagcaccat actggaccaa cacagaaaag atggaaaagc 1140 ggctccatgc tgtgcctgcg gccaacactg tcaagttcg ctgcccagcc ggggggaacc 1200 caatgccaac catgcggtgg ctgaaaaacg ggaaggagtt taagcaggag catcgcattg 1220 aacaagggaaa ttatacctgt gtagtggaa accattat ggaaaagtgt gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaaa atgaatacg gtccatcaat cacacgtacc 1380
gcaggctgaa ggcattgcgc gtagtccatg cccgtagagg aagtgtgcag atgggattaa 600 cgtccacatg gagatatgga agaggaccgg ggattggtac cgtaaccatg gtcagctggg 660 gtcgtttcat ctgcctggtc gtggtcacca tggcaacctt gtccctggcc cggccctcct 720 tcagtttagt tgaggatacc acattagagc cagaagagcc accaaccaaa taccaaatct 780 ctcaaccaga agtgtacgtg gctggccag gggagtcgct agaggtgcgc tgcctgttga 840 aagatgccgc cgtgatcagt tggactaagg atggggtgca cttggggccc aacaatagga 900 cagtgcttat tgggggagtac ttgcagataa agggcgccac gcctagagac tccggcctct 960 atgcttgtac tgccagtagg actgtagaca gtgaaacttg gtacttcatg gtgaatgtca 1020 cagatgccat ctcatccgga gatgatgagg atgacaccga tggtgcggaa gattttgtca 1080 gtgagaacag taacaacaag agagcaccat actggaccaa cacagaaaag atggaaaagc 1200 caatgccaac catgcggtgg ctgaaaaacg ggaaggagtt taagcaggag catcgcattg 1260 gaggctacaa ggtacgaaac cagcactgga gcctcattat ggaaagtgt gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacgg gtccatcaat cacacgtacc 1380
cgtccacatg gagatatgga agaggaccgg ggattggtac cgtaaccatg gtcagctggg 660 gtcgtttcat ctgcctggtc gtggtcacca tggcaacctt gtccctggcc cggccctcct 720 tcagtttagt tgaggatacc acattagagc cagaagagcc accaaccaaa taccaaatct 780 ctcaaccaga agtgtacgtg gctgcgccag gggagtcgct agaggtgcgc tgcctgttga 840 aagatgccgc cgtgatcagt tggactaagg atggggtgca cttgggggccc aacaatagga 900 cagtgcttat tgggggagtac ttgcagataa agggcgccac gcctagagac tccggcctct 960 atgcttgtac tgccagtagg actgtagaca gtgaaacttg gtacttcatg gtgaatgtca 1020 cagatgccat ctcatccgga gatgatgag atgacaccga tggtgcggaa gattttgtca 1080 gtgagaacag taacaacaag agagcaccat actggaccaa cacagaaaag atggaaaagc 1140 ggctccatgc tgtgcctgg gccaacactg tcaagtttcg ctgcccagcc ggggggaacc 1200 caatgccaac catgcggtgg ctgaaaaacg ggaaggagt taagcaggag catcgcattg 1260 gaggctacaa ggtacgaaac cagcactgga gcctcattat ggaaagtgt gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacgg gtccatcaat cacacgtacc 1380
gtegttteat etgeetggte gtggteacea tggcaacett gteeetggee eggeeteet 720 teagtttagt tgaggatace acattagage cagaagagee accaaceaaa taccaaatet 780 etcaaceaga agtgtaegtg getgegeeag gggagteget agaggtgee tgeetgttga 840 aagatgeege egtgateagt tggactaagg atggggtgea ettggggeee aacaatagga 900 cagtgettat tgggggagtac ttgcagataa agggegeeae geetagagae teeggeetet 960 atgettgtae tgeeagtagg actgtagaea gtgaaacettg gtactteatg gtgaatgtea 1020 cagatgeeat etcateegga gatgatgagg atgacacega tggtgeggaa gattttgtea 1080 gtgagaacag taacaacaag agagcaceat actggaceaa cacagaaaag atggaaaage 1140 ggeteeatge tgtgeetgeg geeaacactg teaagtteg etgeecagee ggggggaace 1200 caatgeeaae catgeggtgg etgaaaaacg ggaaggagt taagcaggag categeattg 1260 gagggetacaa ggtaegaaae cagcactgga geeteattat ggaaagtgt gteecatetg 1320 acaagggaaa ttatacetgt gtagtggaga atgaatacgg gteeateaat cacacgtace 1380
tcagtttagt tgaggatacc acattagagc cagaagagcc accaaccaaa taccaaatct 780 ctcaaccaga agtgtacgtg gctgcgccag gggagtcgct agaggtgcgc tgcctgttga 840 aagatgccgc cgtgatcagt tggactaagg atggggtgca cttgggggccc aacaatagga 900 cagtgcttat tgggggagtac ttgcagataa agggcgccac gcctagagac tccggcctct 960 atgcttgtac tgccagtagg actgtagaca gtgaaacttg gtacttcatg gtgaatgtca 1020 cagatgccat ctcatccgga gatgatgagg atgacaccga tggtgcggaa gattttgtca 1080 gtgagaacag taacaacaag agagcaccat actggaccaa cacagaaaag atggaaaagc 1140 ggctccatgc tgtgcctgcg gccaacactg tcaagtttcg ctgcccagcc ggggggaacc 1200 caatgccaac catgcggtgg ctgaaaaacg ggaaggagtt taagcaggag catcgcattg 1260 gaggctacaa ggtacgaaac cagcactgga gcctcattat ggaaagtgt gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacgg gtccatcaat cacacgtacc 1380
ctcaaccaga agtgtacgtg gctgcgccag gggagtcgct agaggtgcgc tgcctgttga 840 aagatgccgc cgtgatcagt tggactaagg atggggtgca cttgggggccc aacaatagga 900 cagtgcttat tggggagtac ttgcagataa agggcgccac gcctagagac tccggcctct 960 atgcttgtac tgccagtagg actgtagaca gtgaaacttg gtacttcatg gtgaatgtca 1020 cagatgccat ctcatccgga gatgatgagg atgacaccga tggtgcggaa gattttgtca 1080 gtgagaacag taacaacaag agagcaccat actggaccaa cacagaaaag atggaaaagc 1140 ggctccatgc tgtgcctgcg gccaacactg tcaagtttcg ctgcccagcc ggggggaacc 1200 caatgccaac catgcggtgg ctgaaaaacg ggaaggagtt taagcaggag catcgcattg 1260 gaggctacaa ggtacgaaac cagcactgga gcctcattat ggaaagtgtg gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacgg gtccatcaat cacacgtacc 1380
aagatgccgc cgtgatcagt tggactaagg atggggtgca cttgggggccc aacaatagga 900 cagtgcttat tgggggagtac ttgcagataa agggcgccac gcctagagac tccggcctct 960 atgcttgtac tgccagtagg actgtagaca gtgaaacttg gtacttcatg gtgaatgtca 1020 cagatgccat ctcatccgga gatgatgagg atgacaccga tggtgcggaa gattttgtca 1080 gtgagaacag taacaacaag agagcaccat actggaccaa cacagaaaag atggaaaagc 1140 ggctccatgc tgtgcctgcg gccaacactg tcaagtttcg ctgcccagcc ggggggaacc 1200 caatgccaac catgcggtgg ctgaaaaacg ggaaggagt taagcaggag catcgcattg 1260 gaggctacaa ggtacgaaac cagcactgga gcctcattat ggaaagtgt gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacgg gtccatcaat cacacgtacc 1380
cagtgettat tggggagtac ttgcagataa agggegecac gectagagac teeggeetet 960 atgettgtac tgccagtagg actgtagaca gtgaaacttg gtactteatg gtgaatgtea 1020 cagatgecat etcateegga gatgatgagg atgacacega tggtgeggaa gattttgtea 1080 gtgagaacag taacaacaag agageaceat actggaceaa cacagaaaag atggaaaage 1140 ggetecatge tgtgeetgeg gecaacactg teaagttteg etgeceagee ggggggaace 1200 caatgecaac catgeggtgg etgaaaaacg ggaaggagtt taageaggag categeattg 1260 gaggetacaa ggtacgaaac cagcactgga geeteattat ggaaagtgtg gteceatetg 1320 acaagggaaa ttatacetgt gtagtggaga atgaatacgg gtecateaat cacacgtace 1380
atgettgtac tgecagtagg actgtagaca gtgaaacttg gtactteatg gtgaatgtca 1020 cagatgccat ctcatccgga gatgatgagg atgacaccga tggtgcggaa gattttgtca 1080 gtgagaacag taacaacaag agagcaccat actggaccaa cacagaaaag atggaaaagc 1140 ggctccatgc tgtgcctgcg gccaacactg tcaagtttcg ctgcccagcc ggggggaacc 1200 caatgccaac catgcggtgg ctgaaaaaacg ggaaggagtt taagcaggag catcgcattg 1260 gaggctacaa ggtacgaaac cagcactgga gcctcattat ggaaagtgtg gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacgg gtccatcaat cacacgtacc 1380
cagatgccat ctcatccgga gatgatgagg atgacaccga tggtgcggaa gattttgtca 1080 gtgagaacag taacaacaag agagcaccat actggaccaa cacagaaaag atggaaaagc 1140 ggctccatgc tgtgcctgcg gccaacactg tcaagtttcg ctgcccagcc ggggggaacc 1200 caatgccaac catgcggtgg ctgaaaaacg ggaaggagtt taagcaggag catcgcattg 1260 gaggctacaa ggtacgaaac cagcactgga gcctcattat ggaaagtgtg gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacgg gtccatcaat cacacgtacc 1380
gtgagaacag taacaacaag agagcaccat actggaccaa cacagaaaag atggaaaagc 1140 ggctccatgc tgtgcctgcg gccaacactg tcaagtttcg ctgcccagcc ggggggaacc 1200 caatgccaac catgcggtgg ctgaaaaacg ggaaggagtt taagcaggag catcgcattg 1260 gaggctacaa ggtacgaaac cagcactgga gcctcattat ggaaagtgtg gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacgg gtccatcaat cacacgtacc 1380
ggetecatge tgtgeetgeg gecaacactg teaagttteg etgeecagee ggggggaace 1200 caatgeeaac catgeggtgg etgaaaaacg ggaaggagtt taagcaggag categeattg 1260 gaggetacaa ggtaegaaac cageactgga geeteattat ggaaagtgtg gteecatetg 1320 acaagggaaa ttatacetgt gtagtggaga atgaatacgg gteeateaat cacaegtace 1380
caatgccaac catgcggtgg ctgaaaaacg ggaaggagtt taagcaggag catcgcattg 1260 gaggctacaa ggtacgaaac cagcactgga gcctcattat ggaaagtgtg gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacgg gtccatcaat cacacgtacc 1380
gaggctacaa ggtacgaaac cagcactgga gcctcattat ggaaagtgtg gtcccatctg 1320 acaagggaaa ttatacctgt gtagtggaga atgaatacgg gtccatcaat cacacgtacc 1380
acaagggaaa ttatacctgt gtagtggaga atgaatacgg gtccatcaat cacacgtacc 1380
acctggatgt tgtggagcga tcgcctcacc ggcccatcct ccaagccgga ctgccggcaa 1440
atgeeteeae agtggtegga ggagaegtag agtttgtetg caaggtttae agtgatgeee 1500
agececacat ecagtggate aageaegtgg aaaagaaegg eagtaaatae gggeeegaeg 1560
ggctgcccta cctcaaggtt ctcaaggccg ccggtgttaa caccacggac aaagagattg 1620
aggtteteta tatteggaat gtaaettttg aggaegetgg ggaatataeg tgettggegg 1680
gtaattetat tgggatatee ttteactetg catggttgae agttetgeea gegeetggaa 1740
gagaaaagga gattacagct teeecagaet aeetggagat ageeatttae tgeatagggg 1800
tettettaat egeetgtatg gtggtaacag teateetgtg eegaatgaag aacaegacea 1860
agaagccaga cttcagcagc cagccggctg tgcacaagct gaccaaacgt atcccctgc 1920
ggagacaggt aacagttteg getgagteea geteeteeat gaacteeaac acceegetgg 1980
tgaggataac aacacgcctc tcttcaacgg cagacacccc catgctggca ggggtctccg 2040
agtatgaact tccagaggac ccaaaatggg agtttccaag agataagctg acactgggca 2100
agcccctggg agaaggttgc tttgggcaag tggtcatggc ggaagcagtg ggaattgaca 2160
aagacaagcc caaggaggcg gtcaccgtgg ccgtgaagat gttgaaagat gatgccacag 2220
agaaagacct ttctgatctg gtgtcagaga tggagatgat gaagatgatt gggaaacaca 2280

agaatatcat aaatettett ggageetgea cacaggatgg geetetetat gteatagttg	2340
agtatgcctc taaaggcaac ctccgagaat acctccgagc ccggaggcca cccgggatgg	2400
agtactccta tgacattaac cgtgttcctg aggagcagat gaccttcaag gacttggtgt	2460
catgcaccta ccagctggcc agaggcatgg agtacttggc ttcccaaaaa tgtattcatc	2520
gagatttagc agccagaaat gttttggtaa cagaaaacaa tgtgatgaaa atagcagact	2580
ttggactcgc cagagatatc aacaatatag actattacaa aaagaccacc aatgggcggc	2640
ttccagtcaa gtggatggct ccagaagccc tgtttgatag agtatacact catcagagtg	2700
atgtctggtc cttcggggtg ttaatgtggg agatcttcac tttagggggc tcgccctacc	2760
cagggattcc cgtggaggaa ctttttaagc tgctgaagga aggacacaga atggataagc	2820
cagccaactg caccaacgaa ctgtacatga tgatgaggga ctgttggcat gcagtgccct	2880
cccagagacc aacgttcaag cagttggtag aagacttgga tcgaattctc actctcacaa	2940
ccaatgagga atacttggac ctcagccaac ctctcgaaca gtattcacct agttaccctg	3000
acacaagaag ttcttgttct tcaggagatg attctgtttt ttctccagac cccatgcctt	3060
acgaaccatg cetteeteag tatecacaca taaacggcag tgttaaaaca tgaatgactg	3120
tgtctgcctg tccccaaaca ggacagcact gggaacctag ctacactgag cagggagacc	3180
atgcctccca gagcttgttg tctccacttg tatatatgga tcagaggagt aaataattgg	3240
aaaagtaatc agcatatgtg taaagattta tacagttgaa aacttgtaat cttccccagg	3300
aggagaagaa ggtttetgga geagtggaet geeacaagee accatgtaae eeeteteaee	3360
tgccgtgcgt actggctgtg gaccagtagg actcaaggtg gacgtgcgtt ctgccttcct	3420
tgttaatttt gtaataattg gagaagattt atgtcagcac acacttacag agcacaaatg	3480
cagtatatag gtgctggatg tatgtaaata tattcaaatt atgtataaat atatattata	3540
tatttacaag gagttatttt ttgtattgat tttaaatgga tgtcccaatg cacctagaaa	3600
attggtctct ctttttttaa tagctatttg ctaaatgctg ttcttacaca taatttctta	3660
attttcaccg agcagaggtg gaaaaatact tttgctttca gggaaaatgg tataacgtta	3720
atttattaat aaattggtaa tatacaaaac aattaatcat ttatagtttt ttttgtaatt	3780
taagtggcat ttctatgcag gcagcacagc agactagtta atctattgct tggacttaac	3840
tagttatcag atcctttgaa aagagaatat ttacaatata tgactaattt ggggaaaatg	3900
aagttttgat ttatttgtgt ttaaatgotg otgtoagaog attgttotta gaootootaa	3960
atgccccata ttaaaagaac tcattcatag gaaggtgttt cattttggtg tgcaaccctg	4020
tcattacgtc aacgcaacgt ctaactggac ttcccaagat aaatggtacc agcgtcctct	4080
taaaagatgc cttaatccat teettgagga cagacettag ttgaaatgat agcagaatgt	4140
gettetetet ggeagetgge ettetgette tgagttgeae attaateaga ttageetgta	4200
ttctcttcag tgaattttga taatggcttc cagactcttt ggcgttggag acgcctgtta	4260
ggatetteaa gteecateat agaaaattga aacacagagt tgttetgetg atagttttgg	4320
ggatacgtcc atctttttaa gggattgctt tcatctaatt ctggcaggac ctcaccaaaa	4380
gatccagcct catacctaca tcagacaaaa tatcgccgtt gttccttctg tactaaagta	4440
ttgtgttttg ctttggaaac acccactcac tttgcaatag ccgtgcaaga tgaatgcaga	4500
ttacactgat cttatgtgtt acaaaattgg agaaagtatt taataaaacc tgttaatttt	4560
tatactgaca ataaaaatgt ttctacagat attaatgtta acaagacaaa ataaatgtca	4620
cgcaacttat ttttttaata aaaaaaaaa aaaa	4654

<210> SEQ ID NO 131 <211> LENGTH: 4657 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 131

· ·						
ggcggcggct	ggaggagagc	gcggtggaga	gccgagcggg	cgggcggcgg	gtgcggagcg	60
ggcgagggag	cgcgcgcggc	cgccacaaag	ctcgggcgcc	geggggetge	atgcggcgta	120
cctggcccgg	cgcggcgact	geteteeggg	ctggcggggg	ccggccgcga	gccccggggg	180
ccccgaggcc	gcagcttgcc	tgegegetet	gagccttcgc	aactcgcgag	caaagtttgg	240
tggaggcaac	gccaagcctg	agtcctttct	teetetegtt	ccccaaatcc	gagggcagcc	300
cgcgggcgtc	atgecegege	tecteegeag	cctggggtac	gcgtgaagcc	cgggaggctt	360
ggegeeggeg	aagacccaag	gaccactctt	ctgcgtttgg	agttgctccc	cgcaaccccg	420
ggetegtege	tttctccatc	ccgacccacg	cggggcgcgg	ggacaacaca	ggtcgcggag	480
gagegttgee	attcaagtga	ctgcagcagc	ageggeageg	cctcggttcc	tgagcccacc	540
gcaggctgaa	ggcattgcgc	gtagtccatg	cccgtagagg	aagtgtgcag	atgggattaa	600
cgtccacatg	gagatatgga	agaggaccgg	ggattggtac	cgtaaccatg	gtcagctggg	660
gtcgtttcat	ctgcctggtc	gtggtcacca	tggcaacctt	gtccctggcc	cggccctcct	720
tcagtttagt	tgaggatacc	acattagagc	cagaagagcc	accaaccaaa	taccaaatct	780
ctcaaccaga	agtgtacgtg	gctgcgccag	gggagtcgct	agaggtgcgc	tgcctgttga	840
aagatgccgc	cgtgatcagt	tggactaagg	atggggtgca	cttggggccc	aacaatagga	900
cagtgcttat	tggggagtac	ttgcagataa	agggcgccac	gcctagagac	tccggcctct	960
atgcttgtac	tgccagtagg	actgtagaca	gtgaaacttg	gtacttcatg	gtgaatgtca	1020
cagatgccat	ctcatccgga	gatgatgagg	atgacaccga	tggtgcggaa	gattttgtca	1080
gtgagaacag	taacaacaag	agagcaccat	actggaccaa	cacagaaaag	atggaaaagc	1140
ggctccatgc	tgtgcctgcg	gccaacactg	tcaagtttcg	ctgcccagcc	ggggggaacc	1200
caatgccaac	catgcggtgg	ctgaaaaacg	ggaaggagtt	taagcaggag	catcgcattg	1260
gaggctacaa	ggtacgaaac	cagcactgga	gcctcattat	ggaaagtgtg	gtcccatctg	1320
acaagggaaa	ttatacctgt	gtagtggaga	atgaatacgg	gtccatcaat	cacacgtacc	1380
acctggatgt	tgtggagcga	tegeeteace	ggcccatcct	ccaagccgga	ctgccggcaa	1440
atgcctccac	agtggtcgga	ggagacgtag	agtttgtctg	caaggtttac	agtgatgccc	1500
agccccacat	ccagtggatc	aagcacgtgg	aaaagaacgg	cagtaaatac	gggcccgacg	1560
ggctgcccta	cctcaaggtt	ctcaagcact	cggggataaa	tagttccaat	gcagaagtgc	1620
tggctctgtt	caatgtgacc	gaggcggatg	ctggggaata	tatatgtaag	gtctccaatt	1680
atatagggca	ggccaaccag	tetgeetgge	tcactgtcct	gccaaaacag	caagegeetg	1740
gaagagaaaa	ggagattaca	gcttccccag	actacctgga	gatagccatt	tactgcatag	1800
gggtettett	aatcgcctgt	atggtggtaa	cagtcatcct	gtgccgaatg	aagaacacga	1860
ccaagaagcc	agacttcagc	agccagccgg	ctgtgcacaa	gctgaccaaa	cgtatccccc	1920
tgcggagaca	ggtaacagtt	tcggctgagt	ccagctcctc	catgaactcc	aacaccccgc	1980
tggtgaggat	aacaacacgc	ctctcttcaa	cggcagacac	ccccatgctg	gcaggggtct	2040
ccgagtatga	acttccagag	gacccaaaat	gggagtttcc	aagagataag	ctgacactgg	2100

gcaagcccct	gggagaaggt	tgctttgggc	aagtggtcat	ggcggaagca	gtgggaattg	2160
acaaagacaa	gcccaaggag	gcggtcaccg	tggccgtgaa	gatgttgaaa	gatgatgcca	2220
cagagaaaga	cctttctgat	ctggtgtcag	agatggagat	gatgaagatg	attgggaaac	2280
acaagaatat	cataaatctt	cttggagcct	gcacacagga	tgggcctctc	tatgtcatag	2340
ttgagtatgc	ctctaaaggc	aacctccgag	aatacctccg	agcccggagg	ccacccggga	2400
tggagtactc	ctatgacatt	aaccgtgttc	ctgaggagca	gatgaccttc	aaggacttgg	2460
tgtcatgcac	ctaccagctg	gccagaggca	tggagtactt	ggcttcccaa	aaatgtattc	2520
atcgagattt	agcagccaga	aatgttttgg	taacagaaaa	caatgtgatg	aaaatagcag	2580
actttggact	cgccagagat	atcaacaata	tagactatta	caaaaagacc	accaatgggc	2640
ggcttccagt	caagtggatg	gctccagaag	ccctgtttga	tagagtatac	actcatcaga	2700
gtgatgtctg	gteetteggg	gtgttaatgt	gggagatett	cactttaggg	ggetegeeet	2760
acccagggat	tecegtggag	gaacttttta	agctgctgaa	ggaaggacac	agaatggata	2820
agccagccaa	ctgcaccaac	gaactgtaca	tgatgatgag	ggactgttgg	catgcagtgc	2880
cctcccagag	accaacgttc	aagcagttgg	tagaagactt	ggatcgaatt	ctcactctca	2940
caaccaatga	ggaatacttg	gacctcagcc	aacctctcga	acagtattca	cctagttacc	3000
ctgacacaag	aagttettgt	tetteaggag	atgattctgt	tttttctcca	gaccccatgc	3060
cttacgaacc	atgeetteet	cagtatccac	acataaacgg	cagtgttaaa	acatgaatga	3120
ctgtgtctgc	ctgtccccaa	acaggacagc	actgggaacc	tagctacact	gagcagggag	3180
accatgcctc	ccagagettg	ttgtctccac	ttgtatatat	ggatcagagg	agtaaataat	3240
tggaaaagta	atcagcatat	gtgtaaagat	ttatacagtt	gaaaacttgt	aatcttcccc	3300
aggaggagaa	gaaggtttct	ggagcagtgg	actgccacaa	gccaccatgt	aacccctctc	3360
acctgccgtg	cgtactggct	gtggaccagt	aggactcaag	gtggacgtgc	gttctgcctt	3420
ccttgttaat	tttgtaataa	ttggagaaga	tttatgtcag	cacacactta	cagagcacaa	3480
atgcagtata	taggtgctgg	atgtatgtaa	atatattcaa	attatgtata	aatatatatt	3540
atatatttac	aaggagttat	tttttgtatt	gattttaaat	ggatgtccca	atgcacctag	3600
aaaattggtc	tctcttttt	taatagctat	ttgctaaatg	ctgttcttac	acataatttc	3660
ttaattttca	ccgagcagag	gtggaaaaat	acttttgctt	tcagggaaaa	tggtataacg	3720
ttaatttatt	aataaattgg	taatatacaa	aacaattaat	catttatagt	tttttttgta	3780
atttaagtgg	catttctatg	caggcagcac	agcagactag	ttaatctatt	gcttggactt	3840
aactagttat	cagateettt	gaaaagagaa	tatttacaat	atatgactaa	tttggggaaa	3900
atgaagtttt	gatttatttg	tgtttaaatg	ctgctgtcag	acgattgttc	ttagacctcc	3960
taaatgcccc	atattaaaag	aactcattca	taggaaggtg	tttcattttg	gtgtgcaacc	4020
ctgtcattac	gtcaacgcaa	cgtctaactg	gacttcccaa	gataaatggt	accagcgtcc	4080
tcttaaaaga	tgccttaatc	cattccttga	ggacagacct	tagttgaaat	gatagcagaa	4140
tgtgcttctc	tctggcagct	ggccttctgc	ttctgagttg	cacattaatc	agattagcct	4200
gtattctctt	cagtgaattt	tgataatggc	ttccagactc	tttggcgttg	gagacgcctg	4260
ttaggatctt	caagtcccat	catagaaaat	tgaaacacag	agttgttctg	ctgatagttt	4320
tggggatacg	tccatctttt	taagggattg	ctttcatcta	attctggcag	gacctcacca	4380
				gttgttcctt		4440
				tagccgtgca		4500
J			andengeda			

agattacact	gatcttatgt	gttacaaaat	tggagaaagt	atttaataaa	acctgttaat	4560			
ttttatactg	acaataaaaa	tgtttctaca	gatattaatg	ttaacaagac	aaaataaatg	4620			
tcacgcaact	tatttttta	ataaaaaaaa	aaaaaaa			4657			
<210> SEQ ID NO 132 <211> LENGTH: 2781 <212> TYPE: DNA <213> ORGANISM: Homo sapiens									
<400> SEQUI	ENCE: 132								
tgactgcagc	agcagcggca	gcgcctcggt	tcctgagccc	accgcaggct	gaaggcattg	60			
cgcgtagtcc	atgcccgtag	aggaagtgtg	cagatgggat	taacgtccac	atggagatat	120			
ggaagaggac	cggggattgg	taccgtaacc	atggtcagct	ggggtcgttt	catctgcctg	180			
gtcgtggtca	ccatggcaac	cttgtccctg	geeeggeeet	ccttcagttt	agttgaggat	240			
accacattag	agccagaaga	gccaccaacc	aaataccaaa	tctctcaacc	agaagtgtac	300			
gtggctgcgc	caggggagtc	gctagaggtg	cgctgcctgt	tgaaagatgc	cgccgtgatc	360			
agttggacta	aggatggggt	gcacttgggg	cccaacaata	ggacagtgct	tattggggag	420			
tacttgcaga	taaagggcgc	cacgcctaga	gactccggcc	tctatgcttg	tactgccagt	480			
aggactgtag	acagtgaaac	ttggtacttc	atggtgaatg	tcacagatgc	catctcatcc	540			
ggagatgatg	aggatgacac	cgatggtgcg	gaagattttg	tcagtgagaa	cagtaacaac	600			
aagagagcac	catactggac	caacacagaa	aagatggaaa	ageggeteca	tgctgtgcct	660			
gcggccaaca	ctgtcaagtt	tegetgeeca	gccgggggga	acccaatgcc	aaccatgcgg	720			
tggctgaaaa	acgggaagga	gtttaagcag	gagcatcgca	ttggaggcta	caaggtacga	780			
aaccagcact	ggagcctcat	tatggaaagt	gtggtcccat	ctgacaaggg	aaattatacc	840			
tgtgtagtgg	agaatgaata	cgggtccatc	aatcacacgt	accacctgga	tgttgtggag	900			
cgatcgcctc	accggcccat	cctccaagcc	ggactgccgg	caaatgcctc	cacagtggtc	960			
ggaggagacg	tagagtttgt	ctgcaaggtt	tacagtgatg	cccagcccca	catccagtgg	1020			
atcaagcacg	tggaaaagaa	cggcagtaaa	tacgggcccg	acgggctgcc	ctacctcaag	1080			
gttctcaagc	actcggggat	aaatagttcc	aatgcagaag	tgctggctct	gttcaatgtg	1140			
accgaggcgg	atgctgggga	atatatatgt	aaggtctcca	attatatagg	gcaggccaac	1200			
cagtctgcct	ggctcactgt	cctgccaaaa	cagcaagcgc	ctggaagaga	aaaggagatt	1260			
acagetteee	cagactacct	ggagatagcc	atttactgca	taggggtctt	cttaatcgcc	1320			
tgtatggtgg	taacagtcat	cctgtgccga	atgaagaaca	cgaccaagaa	gccagacttc	1380			
agcagccagc	cggctgtgca	caagctgacc	aaacgtatcc	ccctgcggag	acaggtaaca	1440			
gtttcggctg	agtccagctc	ctccatgaac	tccaacaccc	cgctggtgag	gataacaaca	1500			
cgcctctctt	caacggcaga	cacccccatg	ctggcagggg	tctccgagta	tgaacttcca	1560			
gaggacccaa	aatgggagtt	tccaagagat	aagctgacac	tgggcaagcc	cctgggagaa	1620			
ggttgctttg	ggcaagtggt	catggcggaa	gcagtgggaa	ttgacaaaga	caagcccaag	1680			
gaggcggtca	ccgtggccgt	gaagatgttg	aaagatgatg	ccacagagaa	agacctttct	1740			
gatctggtgt	cagagatgga	gatgatgaag	atgattggga	aacacaagaa	tatcataaat	1800			
cttcttggag	cctgcacaca	ggatgggcct	ctctatgtca	tagttgagta	tgcctctaaa	1860			
ggcaacctcc	gagaatacct	ccgagcccgg	aggccacccg	ggatggagta	ctcctatgac	1920			

-continued

-continued	
attaaccgtg ttcctgagga gcagatgacc ttcaaggact tggtgtcatg cacctaccag	1980
ctggccagag gcatggagta cttggcttcc caaaaatgta ttcatcgaga tttagcagcc	2040
agaaatgttt tggtaacaga aaacaatgtg atgaaaatag cagactttgg actcgccaga	2100
gatatcaaca atatagacta ttacaaaaag accaccaatg ggcggcttcc agtcaagtgg	2160
atggctccag aagccctgtt tgatagagta tacactcatc agagtgatgt ctggtccttc	2220
ggggtgttaa tgtgggagat etteaettta gggggetege eetaeecagg gatteeegtg	2280
gaggaacttt ttaagctgct gaaggaagga cacagaatgg ataagccagc caactgcacc	2340
aacgaactgt acatgatgat gagggactgt tggcatgcag tgccctccca gagaccaacg	2400
ttcaagcagt tggtagaaga cttggatcga attctcactc tcacaaccaa tgagatctga	2460
aagtttatgg cttcattgag aaactgggaa aagttggtca ggcgcagtgg ctcatgcctg	2520
taatcccagc actttgggag gccgaggcag gcggatcatg aggtcaggag ttccagacca	2580
gcctggccaa catggtgaaa ccctgtctct actaaagata caaaaaatta gccgggcgtg	2640
ttggtgtgca cctgtaatcc cagctactcc gggaggctga ggcaggagag tcacttgaac	2700
cggggaggcg gaggttgcag tgagccgaga tcatgccatt gcattccagc cttggcgaca	2760
gagegagaet eegteteaaa a	2781
<210> SEQ ID NO 133 <211> LENGTH: 3821 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 133	
tgactgcagc agcagcggca gcgcctcggt tcctgagccc accgcaggct gaaggcattg	60
egegtagtee atgecegtag aggaagtgtg eagatgggat taaegteeae atggagatat	120
ggaagaggac cggggattgg taccgtaacc atggtcagct ggggtcgttt catctgcctg	180
gtcgtggtca ccatggcaac cttgtccctg gcccggccct ccttcagttt agttgaggat	240
accacattag agccagaaga gccaccaacc aaataccaaa tctctcaacc agaagtgtac	300
gtggctgcgc caggggagtc gctagaggtg cgctgcctgt tgaaagatgc cgccgtgatc	360
agttggacta aggatggggt gcacttgggg cccaacaata ggacagtgct tattggggag	420
tacttgcaga taaagggcgc cacgcctaga gactccggcc tctatgcttg tactgccagt	480
aggactgtag acagtgaaac ttggtacttc atggtgaatg tcacagatgc catctcatcc	540
ggagatgatg aggatgacac cgatggtgcg gaagattttg tcagtgagaa cagtaacaac	600
aagagagcac catactggac caacacagaa aagatggaaa agcggctcca tgctgtgcct	660
gcggccaaca ctgtcaagtt tcgctgccca gccgggggga acccaatgcc aaccatgcgg	720
tggctgaaaa acgggaagga gtttaagcag gagcatcgca ttggaggcta caaggtacga	780
aaccagcact ggagcctcat tatggaaagt gtggtcccat ctgacaaggg aaattatacc	840
tgtgtagtgg agaatgaata cgggtccatc aatcacacgt accacctgga tgttgtggcg	900
cctggaagag aaaaggagat tacagcttcc ccagactacc tggagatagc catttactgc	960
ataggggtot tottaatogo otgtatggtg gtaacagtoa tootgtgoog aatgaagaac	1020
acgaccaaga agccagactt cagcagccag ccggctgtgc acaagctgac caaacgtatc	1080
cccctgcgga gacaggtaac agtttcggct gagtccagct cctccatgaa ctccaacacc	1140
ccgctggtga ggataacaac acgcctctct tcaacggcag acacccccat gctggcaggg	1200

gtctccgagt atgaacttcc agaggaccca aaatgggagt ttccaagaga taagctgaca 1260

ctaaacaaac	ccctgggaga	aggttagttt	aaaca aataa	tastaacaas	aggagtagga	1320
	acaagcccaa					1380
	aagacctttc					1440
						1500
	atatcataaa					1560
	atgcctctaa					1620
	actcctatga					
	gcacctacca					1680
	atttagcagc					1740
	gactcgccag					1800
	cagtcaagtg					1860
cagagtgatg	tetggteett	cggggtgtta	atgtgggaga	tcttcacttt	agggggctcg	1920
ccctacccag	ggattcccgt	ggaggaactt	tttaagctgc	tgaaggaagg	acacagaatg	1980
gataagccag	ccaactgcac	caacgaactg	tacatgatga	tgagggactg	ttggcatgca	2040
gtgccctccc	agagaccaac	gttcaagcag	ttggtagaag	acttggatcg	aattctcact	2100
ctcacaacca	atgaggaata	cttggacctc	agccaacctc	tcgaacagta	ttcacctagt	2160
taccctgaca	caagaagttc	ttgttcttca	ggagatgatt	ctgtttttc	tccagacccc	2220
atgccttacg	aaccatgcct	tcctcagtat	ccacacataa	acggcagtgt	taaaacatga	2280
atgactgtgt	ctgcctgtcc	ccaaacagga	cagcactggg	aacctagcta	cactgagcag	2340
ggagaccatg	cctcccagag	cttgttgtct	ccacttgtat	atatggatca	gaggagtaaa	2400
taattggaaa	agtaatcagc	atatgtgtaa	agatttatac	agttgaaaac	ttgtaatctt	2460
ccccaggagg	agaagaaggt	ttctggagca	gtggactgcc	acaagccacc	atgtaacccc	2520
tctcacctgc	cgtgcgtact	ggctgtggac	cagtaggact	caaggtggac	gtgcgttctg	2580
ccttccttgt	taattttgta	ataattggag	aagatttatg	tcagcacaca	cttacagagc	2640
acaaatgcag	tatataggtg	ctggatgtat	gtaaatatat	tcaaattatg	tataaatata	2700
tattatatat	ttacaaggag	ttattttttg	tattgatttt	aaatggatgt	cccaatgcac	2760
ctagaaaatt	ggtctctctt	tttttaatag	ctatttgcta	aatgctgttc	ttacacataa	2820
tttcttaatt	ttcaccgagc	agaggtggaa	aaatactttt	gctttcaggg	aaaatggtat	2880
aacgttaatt	tattaataaa	ttggtaatat	acaaaacaat	taatcattta	tagtttttt	2940
tgtaatttaa	gtggcatttc	tatgcaggca	gcacagcaga	ctagttaatc	tattgcttgg	3000
acttaactag	ttatcagatc	ctttgaaaag	agaatattta	caatatatga	ctaatttggg	3060
gaaaatgaag	ttttgattta	tttgtgttta	aatgctgctg	tcagacgatt	gttcttagac	3120
ctcctaaatg	ccccatatta	aaagaactca	ttcataggaa	ggtgtttcat	tttggtgtgc	3180
aaccctgtca	ttacgtcaac	gcaacgtcta	actggacttc	ccaagataaa	tggtaccagc	3240
gtcctcttaa	aagatgcctt	aatccattcc	ttgaggacag	accttagttg	aaatgatagc	3300
agaatgtgct	tctctctggc	agctggcctt	ctgcttctga	gttgcacatt	aatcagatta	3360
	tcttcagtga					3420
	tcttcaagtc					3480
	tacgtccatc					3540
						3600
accaaaagat	ccagcctcat	acctacatca	yacaaaatat	egeogreget	cerecigtad	0000

				COIICII	1404		
taaagtattg tg	ttttgctt	tggaaacacc	cactcacttt	gcaatagccg	tgcaagatga	3660	
atgcagatta ca	ctgatctt	atgtgttaca	aaattggaga	aagtatttaa	taaaacctgt	3720	
taatttttat ac	tgacaata	aaaatgtttc	tacagatatt	aatgttaaca	agacaaaata	3780	
aatgtcacgc aa	cttatttt	tttaataaaa	aaaaaaaaa	a		3821	
<210> SEQ ID 1 <211> LENGTH: <212> TYPE: DI <213> ORGANIS	3708 NA	sapiens					
<400> SEQUENC	E: 134						
aatttgttga gg	aatttccc	cctagccttg	accccttgac	ageteeeget	cctactcagt	60	
gctggggaga ag	tagggagg	ccttaagcga	agagatgggt	ctgcactttg	gaggagccgg	120	
acactgttga ct	ttcctgat	gtgaaatcta	cccaggaaca	aaacaccagt	gactgcagca	180	
gcagcggcag cg	cctcggtt	cctgagccca	ccgcaggctg	aaggcattgc	gcgtagtcca	240	
tgcccgtaga gg	aagtgtgc	agatgggatt	aacgtccaca	tggagatatg	gaagaggacc	300	
ggggattggt ac	cgtaacca	tggtcagctg	gggtcgtttc	atctgcctgg	tegtggteac	360	
catggcaacc tte	gtccctgg	cccggccctc	cttcagttta	gttgaggata	ccacattaga	420	
gccagaagat gc	catctcat	ccggagatga	tgaggatgac	accgatggtg	cggaagattt	480	
tgtcagtgag aa	cagtaaca	acaagagagc	accatactgg	accaacacag	aaaagatgga	540	
aaageggete ca	tgctgtgc	ctgcggccaa	cactgtcaag	tttcgctgcc	cagccggggg	600	
gaacccaatg cc	aaccatgc	ggtggctgaa	aaacgggaag	gagtttaagc	aggagcatcg	660	
cattggaggc ta	caaggtac	gaaaccagca	ctggagcctc	attatggaaa	gtgtggtccc	720	
atctgacaag gg	aaattata	cctgtgtagt	ggagaatgaa	tacgggtcca	tcaatcacac	780	
gtaccacctg ga	tgttgtgg	agcgatcgcc	tcaccggccc	atcctccaag	ccggactgcc	840	
ggcaaatgcc tc	cacagtgg	tcggaggaga	cgtagagttt	gtctgcaagg	tttacagtga	900	
tgcccagccc ca	catccagt	ggatcaagca	cgtggaaaag	aacggcagta	aatacgggcc	960	
cgacgggctg cc	ctacctca	aggttctcaa	ggccgccggt	gttaacacca	cggacaaaga	1020	
gattgaggtt ct	ctatattc	ggaatgtaac	ttttgaggac	gctggggaat	atacgtgctt	1080	
ggcgggtaat tc	tattggga	tatcctttca	ctctgcatgg	ttgacagttc	tgccagcgcc	1140	
tggaagagaa aa	ggagatta	cagcttcccc	agactacctg	gagatagcca	tttactgcat	1200	
aggggtcttc tt	aatcgcct	gtatggtggt	aacagtcatc	ctgtgccgaa	tgaagaacac	1260	
gaccaagaag cc	agacttca	gcagccagcc	ggctgtgcac	aagctgacca	aacgtatccc	1320	
cctgcggaga ca	ggtaacag	tttcggctga	gtccagctcc	tccatgaact	ccaacacccc	1380	
gctggtgagg at	aacaacac	gcctctcttc	aacggcagac	acccccatgc	tggcaggggt	1440	
ctccgagtat ga	acttccag	aggacccaaa	atgggagttt	ccaagagata	agctgacact	1500	
gggcaagccc ct	gggagaag	gttgctttgg	gcaagtggtc	atggcggaag	cagtgggaat	1560	
tgacaaagac aa	gcccaagg	aggcggtcac	cgtggccgtg	aagatgttga	aagatgatgc	1620	
cacagagaaa ga	cctttctg	atctggtgtc	agagatggag	atgatgaaga	tgattgggaa	1680	
acacaagaat at	cataaatc	ttettggage	ctgcacacag	gatgggcctc	tctatgtcat	1740	
agttgagtat gc	ctctaaag	gcaacctccg	agaatacctc	cgagcccgga	ggccacccgg	1800	
gatggagtac to						1860	
ggtgtcatgc ac						1920	
Jagaracyc de		- 32249	- 255000000				

tcatcgagat	ttagcagcca	gaaatgtttt	ggtaacagaa	aacaatgtga	tgaaaatagc	1980		
agactttgga	ctcgccagag	atatcaacaa	tatagactat	tacaaaaaga	ccaccaatgg	2040		
gcggcttcca	gtcaagtgga	tggctccaga	agccctgttt	gatagagtat	acactcatca	2100		
gagtgatgtc	tggtccttcg	gggtgttaat	gtgggagatc	ttcactttag	ggggctcgcc	2160		
ctacccaggg	attcccgtgg	aggaactttt	taagctgctg	aaggaaggac	acagaatgga	2220		
taagccagcc	aactgcacca	acgaactgta	catgatgatg	agggactgtt	ggcatgcagt	2280		
gccctcccag	agaccaacgt	tcaagcagtt	ggtagaagac	ttggatcgaa	ttctcactct	2340		
cacaaccaat	gaggaggaga	agaaggtttc	tggagcagtg	gactgccaca	agccaccatg	2400		
taacccctct	cacctgccgt	gegtaetgge	tgtggaccag	taggactcaa	ggtggacgtg	2460		
cgttctgcct	tccttgttaa	ttttgtaata	attggagaag	atttatgtca	gcacacactt	2520		
acagagcaca	aatgcagtat	ataggtgctg	gatgtatgta	aatatattca	aattatgtat	2580		
aaatatatat	tatatattta	caaggagtta	ttttttgtat	tgattttaaa	tggatgtccc	2640		
aatgcaccta	gaaaattggt	ctctctttt	ttaatagcta	tttgctaaat	gctgttctta	2700		
cacataattt	cttaattttc	accgagcaga	ggtggaaaaa	tacttttgct	ttcagggaaa	2760		
atggtataac	gttaatttat	taataaattg	gtaatataca	aaacaattaa	tcatttatag	2820		
ttttttttgt	aatttaagtg	gcatttctat	gcaggcagca	cagcagacta	gttaatctat	2880		
tgcttggact	taactagtta	tcagatcctt	tgaaaagaga	atatttacaa	tatatgacta	2940		
atttggggaa	aatgaagttt	tgatttattt	gtgtttaaat	gctgctgtca	gacgattgtt	3000		
cttagacctc	ctaaatgccc	catattaaaa	gaactcattc	ataggaaggt	gtttcatttt	3060		
ggtgtgcaac	cctgtcatta	cgtcaacgca	acgtctaact	ggacttccca	agataaatgg	3120		
taccagcgtc	ctcttaaaag	atgccttaat	ccattccttg	aggacagacc	ttagttgaaa	3180		
tgatagcaga	atgtgcttct	ctctggcagc	tggccttctg	cttctgagtt	gcacattaat	3240		
cagattagcc	tgtattctct	tcagtgaatt	ttgataatgg	cttccagact	ctttggcgtt	3300		
ggagacgcct	gttaggatct	tcaagtccca	tcatagaaaa	ttgaaacaca	gagttgttct	3360		
gctgatagtt	ttggggatac	gtccatcttt	ttaagggatt	gctttcatct	aattctggca	3420		
ggacctcacc	aaaagatcca	gcctcatacc	tacatcagac	aaaatatcgc	cgttgttcct	3480		
tctgtactaa	agtattgtgt	tttgctttgg	aaacacccac	tcactttgca	atagccgtgc	3540		
aagatgaatg	cagattacac	tgatcttatg	tgttacaaaa	ttggagaaag	tatttaataa	3600		
aacctgttaa	tttttatact	gacaataaaa	atgtttctac	agatattaat	gttaacaaga	3660		
caaaataaat	gtcacgcaac	ttatttttt	aataaaaaaa	aaaaaaaa		3708		
<210> SEQ ID NO 135 <211> LENGTH: 4103 <212> TYPE: DNA <213> ORGANISM: Homo sapiens								
<400> SEQUI	ENCE: 135							
gagcacacat	tgcctcactg	aagtggctgc	acgtatctga	gtcctgtagc	tactgtttta	60		
tetetgttte	ttaaaagtat	gcttttaaaa	agattagcct	cacacatttc	tgtggaccgg	120		
tctggtggta	tcacctggga	ctctgaggtg	aggatggaag	gatttagcag	ataatgaaaa	180		
agaactctgt	ttgcgcacat	ttgagaggct	gaaaaatggt	tttatcccac	ttgggctgga	240		

gtgatttggc attggggaag attccctgac tcgccaatct ctttccttta gtgactgcag

				COHETI	1404	
cagcagcggc	agegeetegg	ttcctgagcc	caccgcaggc	tgaaggcatt	gegegtagte	360
catgcccgta	gaggaagtgt	gcagatggga	ttaacgtcca	catggagata	tggaagagga	420
ccggggattg	gtaccgtaac	catggtcagc	tggggtcgtt	tcatctgcct	ggtcgtggtc	480
accatggcaa	ccttgtccct	ggcccggccc	tccttcagtt	tagttgagga	taccacatta	540
gagccagaag	gagcaccata	ctggaccaac	acagaaaaga	tggaaaagcg	gctccatgct	600
gtgcctgcgg	ccaacactgt	caagtttcgc	tgcccagccg	gggggaaccc	aatgccaacc	660
atgcggtggc	tgaaaaacgg	gaaggagttt	aagcaggagc	atcgcattgg	aggctacaag	720
gtacgaaacc	agcactggag	cctcattatg	gaaagtgtgg	teccatetga	caagggaaat	780
tatacctgtg	tagtggagaa	tgaatacggg	tccatcaatc	acacgtacca	cctggatgtt	840
gtggagcgat	cgcctcaccg	gcccatcctc	caagccggac	tgccggcaaa	tgcctccaca	900
gtggtcggag	gagacgtaga	gtttgtctgc	aaggtttaca	gtgatgccca	gccccacatc	960
cagtggatca	agcacgtgga	aaagaacggc	agtaaatacg	ggcccgacgg	gctgccctac	1020
ctcaaggttc	tcaaggccgc	cggtgttaac	accacggaca	aagagattga	ggttctctat	1080
attcggaatg	taacttttga	ggacgctggg	gaatatacgt	gcttggcggg	taattctatt	1140
gggatatcct	ttcactctgc	atggttgaca	gttctgccag	cgcctggaag	agaaaaggag	1200
attacagctt	ccccagacta	cctggagata	gccatttact	gcataggggt	cttcttaatc	1260
gcctgtatgg	tggtaacagt	catcctgtgc	cgaatgaaga	acacgaccaa	gaagccagac	1320
ttcagcagcc	agccggctgt	gcacaagctg	accaaacgta	teceeetgeg	gagacaggta	1380
acagtttcgg	ctgagtccag	ctcctccatg	aactccaaca	ccccgctggt	gaggataaca	1440
acacgcctct	cttcaacggc	agacaccccc	atgctggcag	gggtctccga	gtatgaactt	1500
ccagaggacc	caaaatggga	gtttccaaga	gataagctga	cactgggcaa	gcccctggga	1560
gaaggttgct	ttgggcaagt	ggtcatggcg	gaagcagtgg	gaattgacaa	agacaagccc	1620
aaggaggcgg	tcaccgtggc	cgtgaagatg	ttgaaagatg	atgccacaga	gaaagacctt	1680
tctgatctgg	tgtcagagat	ggagatgatg	aagatgattg	ggaaacacaa	gaatatcata	1740
aatcttcttg	gagcctgcac	acaggatggg	cctctctatg	tcatagttga	gtatgcctct	1800
aaaggcaacc	tccgagaata	cctccgagcc	cggaggccac	ccgggatgga	gtactcctat	1860
gacattaacc	gtgttcctga	ggagcagatg	accttcaagg	acttggtgtc	atgcacctac	1920
cagetggeea	gaggcatgga	gtacttggct	tcccaaaaat	gtattcatcg	agatttagca	1980
gccagaaatg	ttttggtaac	agaaaacaat	gtgatgaaaa	tagcagactt	tggactcgcc	2040
agagatatca	acaatataga	ctattacaaa	aagaccacca	atgggcggct	tccagtcaag	2100
tggatggctc	cagaagccct	gtttgataga	gtatacactc	atcagagtga	tgtctggtcc	2160
tteggggtgt	taatgtggga	gatcttcact	ttagggggct	cgccctaccc	agggattccc	2220
gtggaggaac	tttttaagct	gctgaaggaa	ggacacagaa	tggataagcc	agccaactgc	2280
accaacgaac	tgtacatgat	gatgagggac	tgttggcatg	cagtgccctc	ccagagacca	2340
acgttcaagc	agttggtaga	agacttggat	cgaattctca	ctctcacaac	caatgaggaa	2400
tacttggacc	tcagccaacc	tctcgaacag	tattcaccta	gttaccctga	cacaagaagt	2460
tcttgttctt	caggagatga	ttctgtttt	tctccagacc	ccatgcctta	cgaaccatgc	2520
cttcctcagt	atccacacat	aaacggcagt	gttaaaacat	gaatgactgt	gtctgcctgt	2580
ccccaaacag	gacagcactg	ggaacctagc	tacactgagc	agggagacca	tgcctcccag	2640
agcttgttgt	ctccacttgt	atatatggat	cagaggagta	aataattgga	aaagtaatca	2700

-continued

gcatatgtgt	aaagatttat	acagttgaaa	acttgtaatc	ttccccagga	ggagaagaag	2760		
gtttctggag	cagtggactg	ccacaagcca	ccatgtaacc	cctctcacct	geegtgegta	2820		
ctggctgtgg	accagtagga	ctcaaggtgg	acgtgcgttc	tgccttcctt	gttaattttg	2880		
taataattgg	agaagattta	tgtcagcaca	cacttacaga	gcacaaatgc	agtatatagg	2940		
tgctggatgt	atgtaaatat	attcaaatta	tgtataaata	tatattatat	atttacaagg	3000		
agttatttt	tgtattgatt	ttaaatggat	gtcccaatgc	acctagaaaa	ttggtctctc	3060		
tttttttaat	agctatttgc	taaatgctgt	tcttacacat	aatttcttaa	ttttcaccga	3120		
gcagaggtgg	aaaaatactt	ttgctttcag	ggaaaatggt	ataacgttaa	tttattaata	3180		
aattggtaat	atacaaaaca	attaatcatt	tatagttttt	tttgtaattt	aagtggcatt	3240		
tctatgcagg	cagcacagca	gactagttaa	tctattgctt	ggacttaact	agttatcaga	3300		
tcctttgaaa	agagaatatt	tacaatatat	gactaatttg	gggaaaatga	agttttgatt	3360		
tatttgtgtt	taaatgctgc	tgtcagacga	ttgttcttag	acctcctaaa	tgccccatat	3420		
taaaagaact	cattcatagg	aaggtgtttc	attttggtgt	gcaaccctgt	cattacgtca	3480		
acgcaacgtc	taactggact	tcccaagata	aatggtacca	gegteetett	aaaagatgcc	3540		
ttaatccatt	ccttgaggac	agaccttagt	tgaaatgata	gcagaatgtg	cttctctctg	3600		
gcagctggcc	ttctgcttct	gagttgcaca	ttaatcagat	tagcctgtat	tctcttcagt	3660		
gaattttgat	aatggcttcc	agactctttg	gcgttggaga	cgcctgttag	gatcttcaag	3720		
tcccatcata	gaaaattgaa	acacagagtt	gttctgctga	tagttttggg	gatacgtcca	3780		
tctttttaag	ggattgcttt	catctaattc	tggcaggacc	tcaccaaaag	atccagcctc	3840		
atacctacat	cagacaaaat	atcgccgttg	ttccttctgt	actaaagtat	tgtgttttgc	3900		
tttggaaaca	cccactcact	ttgcaatagc	cgtgcaagat	gaatgcagat	tacactgatc	3960		
ttatgtgtta	caaaattgga	gaaagtattt	aataaaacct	gttaattttt	atactgacaa	4020		
taaaaatgtt	tctacagata	ttaatgttaa	caagacaaaa	taaatgtcac	gcaacttatt	4080		
tttttaataa	aaaaaaaaa	aaa				4103		
<210> SEQ ID NO 136 <211> LENGTH: 4306 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 136								
	ggaggagagc	acaataaaa	accaaacaaa	caaacaacaa	atacaaaaca	60		
	cgcgcgcggc					120		
	cgcggcgact					180		
ccccgaggcc	gcagcttgcc	tgcgcgctct	gagccttcgc	aactcgcgag	caaagtttgg	240		
tggaggcaac	gccaagcctg	agtcctttct	teetetegtt	ccccaaatcc	gagggcagcc	300		
	atgcccgcgc					360		
	aagacccaag					420		
	tttctccatc					480		
	attcaagtga					540		
						600		
geaggetgaa	ggcattgcgc	gragrecatg	cccgragagg	aayugugcag	acyggactaa	600		

cgtccacatg gagatatgga agaggaccgg ggattggtac cgtaaccatg gtcagctggg

gtcgtttcat	ctgcctggtc	gtggtcacca	tggcaacctt	gtecetggee	eggeeeteet	720	
tcagtttagt	tgaggatacc	acattagagc	cagaagagcc	accaaccaaa	taccaaatct	780	
ctcaaccaga	agtgtacgtg	getgegeeag	gggagteget	agaggtgcgc	tgcctgttga	840	
aagatgeege	cgtgatcagt	tggactaagg	atggggtgca	cttggggccc	aacaatagga	900	
cagtgcttat	tggggagtac	ttgcagataa	agggcgccac	gcctagagac	teeggeetet	960	
atgcttgtac	tgccagtagg	actgtagaca	gtgaaacttg	gtacttcatg	gtgaatgtca	1020	
cagatgccat	ctcatccgga	gatgatgagg	atgacaccga	tggtgcggaa	gattttgtca	1080	
gtgagaacag	taacaacaag	agagcaccat	actggaccaa	cacagaaaag	atggaaaagc	1140	
ggctccatgc	tgtgcctgcg	gccaacactg	tcaagtttcg	ctgcccagcc	ggggggaacc	1200	
caatgccaac	catgcggtgg	ctgaaaaacg	ggaaggagtt	taagcaggag	catcgcattg	1260	
gaggctacaa	ggtacgaaac	cagcactgga	gcctcattat	ggaaagtgtg	gtcccatctg	1320	
acaagggaaa	ttatacctgt	gtagtggaga	atgaatacgg	gtccatcaat	cacacgtacc	1380	
acctggatgt	tgtggagcga	tcgcctcacc	ggcccatcct	ccaagccgga	ctgccggcaa	1440	
atgcctccac	agtggtcgga	ggagacgtag	agtttgtctg	caaggtttac	agtgatgccc	1500	
agccccacat	ccagtggatc	aagcacgtgg	aaaagaacgg	cagtaaatac	gggcccgacg	1560	
ggctgcccta	cctcaaggtt	ctcaaggttt	cggctgagtc	cageteetee	atgaactcca	1620	
acaccccgct	ggtgaggata	acaacacgcc	tctcttcaac	ggcagacacc	cccatgctgg	1680	
caggggtctc	cgagtatgaa	cttccagagg	acccaaaatg	ggagtttcca	agagataagc	1740	
tgacactggg	caagcccctg	ggagaaggtt	gctttgggca	agtggtcatg	gcggaagcag	1800	
tgggaattga	caaagacaag	cccaaggagg	cggtcaccgt	ggccgtgaag	atgttgaaag	1860	
atgatgccac	agagaaagac	ctttctgatc	tggtgtcaga	gatggagatg	atgaagatga	1920	
ttgggaaaca	caagaatatc	ataaatcttc	ttggagcctg	cacacaggat	gggcctctct	1980	
atgtcatagt	tgagtatgcc	tctaaaggca	acctccgaga	atacctccga	gcccggaggc	2040	
cacccgggat	ggagtactcc	tatgacatta	accgtgttcc	tgaggagcag	atgaccttca	2100	
aggacttggt	gtcatgcacc	taccagctgg	ccagaggcat	ggagtacttg	gcttcccaaa	2160	
aatgtattca	tcgagattta	gcagccagaa	atgttttggt	aacagaaaac	aatgtgatga	2220	
aaatagcaga	ctttggactc	gccagagata	tcaacaatat	agactattac	aaaaagacca	2280	
ccaatgggcg	gcttccagtc	aagtggatgg	ctccagaagc	cctgtttgat	agagtataca	2340	
ctcatcagag	tgatgtctgg	tccttcgggg	tgttaatgtg	ggagatette	actttagggg	2400	
gctcgcccta	cccagggatt	cccgtggagg	aactttttaa	gctgctgaag	gaaggacaca	2460	
gaatggataa	gccagccaac	tgcaccaacg	aactgtacat	gatgatgagg	gactgttggc	2520	
atgcagtgcc	ctcccagaga	ccaacgttca	agcagttggt	agaagacttg	gatcgaattc	2580	
tcactctcac	aaccaatgag	gaatacttgg	acctcagcca	acctctcgaa	cagtattcac	2640	
ctagttaccc	tgacacaaga	agttcttgtt	cttcaggaga	tgattctgtt	ttttctccag	2700	
accccatgcc	ttacgaacca	tgeetteete	agtatccaca	cataaacggc	agtgttaaaa	2760	
catgaatgac	tgtgtctgcc	tgtccccaaa	caggacagca	ctgggaacct	agctacactg	2820	
agcagggaga	ccatgcctcc	cagagettgt	tgtctccact	tgtatatatg	gatcagagga	2880	
				tatacagttg		2940	
				ctgccacaag		3000	
						3060	
accectetea	dergeegtge	graciggetg	cyyaccagta	ggactcaagg	cyyacycgcg	3000	

ttctgccttc	cttgttaatt	ttgtaataat	tggagaagat	ttatgtcagc	acacacttac	3120
agagcacaaa	tgcagtatat	aggtgctgga	tgtatgtaaa	tatattcaaa	ttatgtataa	3180
atatatatta	tatatttaca	aggagttatt	ttttgtattg	attttaaatg	gatgtcccaa	3240
tgcacctaga	aaattggtct	ctctttttt	aatagctatt	tgctaaatgc	tgttcttaca	3300
cataatttct	taattttcac	cgagcagagg	tggaaaaata	cttttgcttt	cagggaaaat	3360
ggtataacgt	taatttatta	ataaattggt	aatatacaaa	acaattaatc	atttatagtt	3420
ttttttgtaa	tttaagtggc	atttctatgc	aggcagcaca	gcagactagt	taatctattg	3480
cttggactta	actagttatc	agateetttg	aaaagagaat	atttacaata	tatgactaat	3540
ttggggaaaa	tgaagttttg	atttatttgt	gtttaaatgc	tgctgtcaga	cgattgttct	3600
tagacctcct	aaatgcccca	tattaaaaga	actcattcat	aggaaggtgt	ttcattttgg	3660
tgtgcaaccc	tgtcattacg	tcaacgcaac	gtctaactgg	acttcccaag	ataaatggta	3720
ccagcgtcct	cttaaaagat	gccttaatcc	attccttgag	gacagacctt	agttgaaatg	3780
atagcagaat	gtgcttctct	ctggcagctg	geettetget	tctgagttgc	acattaatca	3840
gattagcctg	tattctcttc	agtgaatttt	gataatggct	tccagactct	ttggcgttgg	3900
agacgcctgt	taggatette	aagtcccatc	atagaaaatt	gaaacacaga	gttgttctgc	3960
tgatagtttt	ggggatacgt	ccatctttt	aagggattgc	tttcatctaa	ttctggcagg	4020
acctcaccaa	aagatccagc	ctcataccta	catcagacaa	aatatcgccg	ttgttccttc	4080
tgtactaaag	tattgtgttt	tgctttggaa	acacccactc	actttgcaat	agccgtgcaa	4140
gatgaatgca	gattacactg	atcttatgtg	ttacaaaatt	ggagaaagta	tttaataaaa	4200
cctattaatt	tttataataa	anatanant				
0009004400	cccacaccga	Caataaaaat	gtttetaeag	atattaatgt	taacaagaca	4260
	cacgcaactt				taacaagaca	4260 4306
aaataaatgt <210> SEQ : <211> LENG' <212> TYPE	cacgcaactt ID NO 137 IH: 4303	attttttaa			taacaagaca	
aaataaatgt <210> SEQ : <211> LENG' <212> TYPE	cacgcaactt ID NO 137 TH: 4303 : DNA NISM: Homo s	attttttaa			taacaagaca	
<pre></pre>	cacgcaactt ID NO 137 TH: 4303 : DNA NISM: Homo s	atttttttaa sapiens	taaaaaaaaa	aaaaaa		
aaataaatgt <210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI	cacgcaactt ID NO 137 TH: 4303 : DNA NISM: Homo s	attttttaa sapiens goggtggaga	taaaaaaaaa gccgagcggg	cgggcggcgg	gtgcggagcg	4306
aaataaatgt <210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI ggcggcggct ggcgagggag	cacgcaactt ID NO 137 IH: 4303 : DNA NISM: Homo s ENCE: 137	attttttaa sapiens gcggtggaga cgccacaaag	taaaaaaaaa gccgagcggg ctcgggcgcc	cgggcggcgg	gtgcggagcg atgcggcgta	4306
aaataaatgt <210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI ggcggcggct ggcgagggag cctggcccgg	cacgcaactt ID NO 137 TH: 4303 : DNA NISM: Homo s ENCE: 137 ggaggagagc cgcgcgcggc	attttttaa sapiens gcggtggaga cgccacaaag	taaaaaaaaa geegageggg etegggggge etggeggggg	aaaaaa cgggggcgg gcggggctgc ccggccgcga	gtgcggagcg atgcggcgta gccccggggg	4306 60 120
aaataaatgt <210> SEQ : <211> LENG' <212> TYPE <213> ORGAJ <400> SEQUJ ggcggcggct ggcgagggag cctggcccgg ccccgaggcc	cacgcaactt ID NO 137 IH: 4303 : DNA NISM: Homo s ENCE: 137 ggaggagagc cgcgcgcgcc	attttttaa sapiens geggtggaga egecacaaag geteteeggg	taaaaaaaaa geegageggg eteggeggge etggeggggg gageettege	cgggcggcgg gcgggctgc ccggccgcga aactcgcgag	gtgcggagcg atgcggcgta gccccggggg caaagtttgg	4306 60 120 180
aaataaatgt <210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI ggcggcggct ggcgagggag cctggcccgg ccccgaggcc tggaggcaac	cacgcaactt ID NO 137 TH: 4303 : DNA NISM: Homo s ENCE: 137 ggaggagagc cgcgcgcggc cgcgcgcgcc	attttttaa sapiens gcggtggaga cgccacaaag gctctccggg tgcgcgctct agtcctttct	taaaaaaaaa gccgagcggg ctcgggcgcc ctggcggggg gagccttcgc	cgggcggcgg gcggggctgc ccggccgcga aactcgcgag	gtgcggagcg atgcggcgta gccccggggg caaagtttgg gagggcagcc	4306 60 120 180 240
aaataaatgt <210> SEQ C <211> LENG' <212> TYPE <213> ORGAN <400> SEQUI ggcggcggct ggcgagggag cctggcccgg ccccgaggcc tggaggcaac cgcgggcgtc	cacgcaactt ID NO 137 TH: 4303 : DNA NISM: Homo s ENCE: 137 ggaggagagc cgcggcggc cgcggcggc cgcggcgact gcagcttgcc gccaagcctg	attttttaa sapiens geggtggaga egecacaaag geteteeggg tgegegetet agteetttet teeteegeag	geegageggg etegggegee etggeggggg gageettege teetetegtt eetggggtae	cgggcggcgg gcgggctgc ccggccgcga aactcgcgag ccccaaatcc gcgtgaagcc	gtgcggagcg atgcggcgta gccccggggg caaagtttgg gagggcagcc cgggaggctt	4306 60 120 180 240 300
aaataaatgt <210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <400> SEQU' ggcggggggt ggcgaggggg cctggccgg cccgaggcc tggagggag ccgggggct tggaggcaac cgcgggggtc	cacgcaactt ID NO 137 TH: 4303 : DNA NISM: Homo s ENCE: 137 ggaggagagc cgcggcggc cgcggcggc cgcggcggc cgcggcg	attttttaa sapiens geggtggaga egecacaaag geteteeggg tgegegetet agteettet teeteegeag gaccactett	decegageggg ctegggegee ctggegggg gageettege teetetegtt eetggggtae etgegtttgg	cgggcggcgg gcggggctgc ccggccgcga aactcgcgag ccccaaatcc gcgtgaagcc agttgctccc	gtgcggagcg atgcggcgta gccccggggg caaagtttgg gagggcagcc cgggaggctt cgcaaccccg	4306 60 120 180 240 300 360
aaataaatgt <210> SEQ C <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI ggcggcggct ggcgagggag cctggcccgg cccgaggcc tggaggcaac cgcgggcgtc ggcggcgct ggcggcgcc tggaggcaac cgcgggcgct ggcgcggcg	cacgcaactt ID NO 137 IH: 4303 : DNA NISM: Homo a ENCE: 137 ggaggagagc cgcgcgcgc cgcgcgcgc cgcgcgcg	attttttaa sapiens geggtggaga egecacaaag geteteeggg tgegegetet agteetttet teeteegeag gaccactett	taaaaaaaaa geegageggg etegggegee etggeggggg gageettege teetetegtt eetggggtae etgegtttgg	cgggcggcgg gcgggctgc ccggccgcga aactcgcgag ccccaaatcc gcgtgaagcc agttgctccc	gtgcggagcg atgcggcgta gccccggggg caaagtttgg gagggcagcc cgggaggctt cgcaaccccg	4306 60 120 180 240 300 360 420
aaataaatgt <210> SEQ <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI ggcggcggct ggcgagggag cctggcccgg ccccgaggcc tggaggcaac cgcggggcgtc ggcgcggcg cgcgggcgtc ggcgcggcg cgcggggcgtc	cacgcaactt ID NO 137 TH: 4303: DNA NISM: Homo s ENCE: 137 ggaggagagc cgcggcggc cgcggcggc cgcggcgcct gcagcttgcc gccaagcctg atgcccgcgc atgcccgcgc	attttttaa sapiens geggtggaga egecacaaag geteteegg tgegegetet agteetttet teeteegeag gaccactett eegacecacg	geegageggg eteggegege eteggegggg gageettege teetetegtt eetggggtae etgegtttgg eggggegegg	cgggcggcgg gcggggctgc ccggccgcga aactcgcgag ccccaaatcc gcgtgaagcc agttgctccc ggacaacaca	gtgcggagcg atgcggcgta gccccggggg caaagtttgg gagggcagcc cgggaggctt cgcaaccccg ggtcgcggag tgagcccacc	4306 60 120 180 240 300 360 420 480
aaataaatgt <210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI ggcggcggct ggcgagggag cctggcccgg ccccgaggcc tggaggcaac cgcgggcgtc ggcgcggcg ggctcgtcgc ggcgcggcg ggctcgtcgc gagcgttgcc	cacgcaactt ID NO 137 TH: 4303: DNA NISM: Homo s ENCE: 137 ggaggagagc cgcggcggc cgcggcggc cgcggcgact gcagcttgcc gccaagcctg atgcccgcgc atgcccaag tttctccatc attcaagtga	attttttaa sapiens geggtggaga egecacaaag geteteeggg tgegegetet agteettet teeteegeag gaccactett eegaccacg	taaaaaaaaa geegageggg etegggegee etggegggg gageettege teetetegtt eetggggtae etgegtttgg eggggegegg ageggeageg	cgggcggcgg gcggggctgc ccggccgcga aactcgcgag ccccaaatcc gcgtgaagcc agttgctccc ggacaacaca cctcggttcc	gtgcggagcg atgcggcgta gccccggggg caaagtttgg gagggcagcc cgggaggctt cgcaaccccg ggtcgcggag tgagcccacc	4306 60 120 180 240 300 360 420 480 540
aaataaatgt <210> SEQ C <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI ggcggcggct ggcgagggag cctggcccgg ccccgaggcc tggaggcaac cgcgggcgtc ggcgcggcg ggctcgtcgc ggcgcggcg cgcggcg cgcggcg cgcggcg cgcggcg	cacgcaactt ID NO 137 IH: 4303 : DNA NISM: Homo a ENCE: 137 ggaggagagc cgcgcgcgc cgcgcgcgc cgcgcgcg	attttttaa sapiens geggtggaga egecacaaag geteteeggg tgegegetet agteetttet teeteegeag gaccactett eegacceacg etgeageage gtagtecatg agaggacegg	taaaaaaaaa geegageggg etegggegee etggeggggg gageettege teetetegtt eetgggtae etgegtttgg eggggegegg ageggeageg ageggeageg	cgggcggcgg gcggggctgc ccggccgcga aactcgcgag ccccaaatcc gcgtgaagcc agttgctccc ggacaacaca cctcggttcc aagtgtgcag	gtgcggagcg atgcggcgta gccccggggg caaagtttgg gagggcagcc cgggaggctt cgcaaccccg ggtcgcggag tgagcccacc atgggattaa gtcagctggg	4306 60 120 180 240 300 420 480 540 600
aaataaatgt <210> SEQ <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI ggcggcggct ggcgagggag cctggcccgg ccccgaggcc tggaggcaac cgcgggcgtc ggcgcggcg cgcggcggcg ggctcgtcgc gagcgttgcc gagcgttgcc gcaggctgaa cgtcacatg gtcgttcat	cacgcaactt ID NO 137 TH: 4303 : DNA NISM: Homo a ENCE: 137 ggaggagagc cgcggcggc cgcggcggc cgcggcgct gcagcttgcc gccaagcctg atgcccgcgc atgccccaag tttctccatc attcaagtga ggcattgcgc	attttttaa sapiens geggtggaga egecacaaag geteteegg tgegegetet agteetttet teeteegeag gaccactett eegaccacg etgeageage gtagtecatg agaggacegg	gecgageggg cteggegege ctggegggg gageettege teetetegtt cetggggtae etgegtttgg eggggegegg ageggegegg ageggeageg ceegtagagg ggattggtae tggeaacett	cgggcggcgg gcggggctgc ccggccgcga aactcgcgag ccccaaatcc gcgtgaagcc agttgctccc ggacaacaca cctcggttcc aagtgtgcag cgtaaccatg	gtgcggagcg atgcggcgta gccccggggg caaagtttgg gagggcagcc cgggaggctt cgcaaccccg ggtcgcggag tgagcccacc atgggattaa gtcagctggg	4306 60 120 180 240 300 420 480 540 600 660

aaaagatgga aaagcggctc catgctgtgc ctgcggccaa cactgtcaag tttcgctgcc

cageeggggg	gaacccaatg	ccaaccatgc	ggtggctgaa	aaacgggaag	gagtttaagc	900	
aggagcatcg	cattggaggc	tacaaggtac	gaaaccagca	ctggagcctc	attatggaaa	960	
gtgtggtccc	atctgacaag	ggaaattata	cctgtgtagt	ggagaatgaa	tacgggtcca	1020	
tcaatcacac	gtaccacctg	gatgttgtgg	agcgatcgcc	tcaccggccc	atcctccaag	1080	
ceggaetgee	ggcaaatgcc	tccacagtgg	teggaggaga	cgtagagttt	gtctgcaagg	1140	
tttacagtga	tgcccagccc	cacatccagt	ggatcaagca	cgtggaaaag	aacggcagta	1200	
aatacgggcc	cgacgggctg	ccctacctca	aggttctcaa	ggccgccggt	gttaacacca	1260	
cggacaaaga	gattgaggtt	ctctatattc	ggaatgtaac	ttttgaggac	gctggggaat	1320	
atacgtgctt	ggcgggtaat	tctattggga	tatcctttca	ctctgcatgg	ttgacagttc	1380	
tgccagcgcc	tggaagagaa	aaggagatta	cagetteece	agactacctg	gagatagcca	1440	
tttactgcat	aggggtcttc	ttaatcgcct	gtatggtggt	aacagtcatc	ctgtgccgaa	1500	
tgaagaacac	gaccaagaag	ccagacttca	gcagccagcc	ggctgtgcac	aagctgacca	1560	
aacgtatccc	cctgcggaga	caggtttcgg	ctgagtccag	ctcctccatg	aactccaaca	1620	
ccccgctggt	gaggataaca	acacgcctct	cttcaacggc	agacaccccc	atgctggcag	1680	
gggtctccga	gtatgaactt	ccagaggacc	caaaatggga	gtttccaaga	gataagctga	1740	
cactgggcaa	gcccctggga	gaaggttgct	ttgggcaagt	ggtcatggcg	gaagcagtgg	1800	
gaattgacaa	agacaagccc	aaggaggcgg	tcaccgtggc	cgtgaagatg	ttgaaagatg	1860	
atgccacaga	gaaagacctt	tctgatctgg	tgtcagagat	ggagatgatg	aagatgattg	1920	
ggaaacacaa	gaatatcata	aatcttcttg	gagcctgcac	acaggatggg	cctctctatg	1980	
tcatagttga	gtatgcctct	aaaggcaacc	tccgagaata	cctccgagcc	cggaggccac	2040	
ccgggatgga	gtactcctat	gacattaacc	gtgttcctga	ggagcagatg	accttcaagg	2100	
acttggtgtc	atgcacctac	cagctggcca	gaggcatgga	gtacttggct	tcccaaaaat	2160	
gtattcatcg	agatttagca	gccagaaatg	ttttggtaac	agaaaacaat	gtgatgaaaa	2220	
tagcagactt	tggactcgcc	agagatatca	acaatataga	ctattacaaa	aagaccacca	2280	
atgggcggct	tccagtcaag	tggatggctc	cagaagccct	gtttgataga	gtatacactc	2340	
atcagagtga	tgtctggtcc	ttcggggtgt	taatgtggga	gatcttcact	ttagggggct	2400	
cgccctaccc	agggattccc	gtggaggaac	tttttaagct	gctgaaggaa	ggacacagaa	2460	
tggataagcc	agccaactgc	accaacgaac	tgtacatgat	gatgagggac	tgttggcatg	2520	
cagtgccctc	ccagagacca	acgttcaagc	agttggtaga	agacttggat	cgaattctca	2580	
ctctcacaac	caatgaggaa	tacttggacc	tcagccaacc	tctcgaacag	tattcaccta	2640	
gttaccctga	cacaagaagt	tcttgttctt	caggagatga	ttctgttttt	tctccagacc	2700	
ccatgcctta	cgaaccatgc	cttcctcagt	atccacacat	aaacggcagt	gttaaaacat	2760	
gaatgactgt	gtetgeetgt	ccccaaacag	gacagcactg	ggaacctagc	tacactgagc	2820	
agggagacca	tgcctcccag	agcttgttgt	ctccacttgt	atatatggat	cagaggagta	2880	
aataattgga	aaagtaatca	gcatatgtgt	aaagatttat	acagttgaaa	acttgtaatc	2940	
ttccccagga	ggagaagaag	gtttctggag	cagtggactg	ccacaagcca	ccatgtaacc	3000	
cctctcacct	gccgtgcgta	ctggctgtgg	accagtagga	ctcaaggtgg	acgtgcgttc	3060	
tgccttcctt	gttaattttq	taataattgq	agaagattta	tgtcagcaca	cacttacaga	3120	
				attcaaatta		3180	
				ttaaatggat		3240	
Jacattatat	ucaayy	gc.cacccct	-gourcyact	- caaacyyat	Jecocaacyc	2210	

acttagaaa ttggtctcc ttttttaat agctattgc taaatgctgt tottacacat 3300 aatttottaa ttttcacoga gcagaggtgg aaaatactt ttgctttcag ggaaatggt 3400 ataacgttaa tttattaata aattggtaat atacaaaca ataatcatt tatagtttt 3420 tttgtaattt aagtggcatt totatgcagg cagacagca gactagtaa totattgctt 3480 ggaaaatga agtttgatt tatttgtgtt taaatgctgc tgtcagacga ttgttcttag 3600 acctcctaaa tgccccatat taaaagaact cattgagg tgtcagagattgttc attttggtgt 3600 acctcctaaa tgccccatat taaaagaact cattgaga agggtgttc attttggtgt 3600 acctcctaaa tgccccatat taaaagaact cattgagga agggtgttc attttggtgt 3600 acctcctaaa tgccccatat taaaagaact cattgagga aggattgat attggtgtg 3720 gcgcctctt aaaagatgcc ttaatccatc cottgagga agacttagt tgaaatgaa 3780 gcagaaatgtg ottototctg gcagctggcc ttctgcttct gagttgcaca ttaatcagat 3840 tagcctgtat tototcag gaatttgat aatggcttcc agactcttg ggatggaga 3900 cgcctgttag gatcttcaag toccatcata gaaaattgaa acacagagtt gttctgctga 3900 cgcctgttag gatcttcaag toccatcata gaaaattgaa acacagagtt gttctgctga 3960 tagttttggg gatacgtcca tottttaag ggattgctt catcaatt tggcaggaac actaaagat tgtgttttgc tttggaaca cccacccact ttgcaatag cgtgcaagat 3960 actaacagaa tacactgatc ttatgtgtta caaaattgga gaaagtatt aataaaacct 4000 actaacagaa tacactgatc ttatgtgtta caaaattgga gaaagtatt aataaaacct 4200 gttaatttt atactgacaa taaaaatgtt tctacagata ttaatgtaa caagacaaaa 4200 stgull LENGTH 3011 <212- TYPE: DNA 213- ORQANISM: Homo sapiens <400- SEQUENCE: 138 gcggagggag cgcgcggga cgcgcgggg cgggggggg							
ataacgttaa titattaata aattggtaat atacaaaca ataatcatt tatagtitti 3430 titigtaatti aagtggcatt totatgcagg ogocacagca gactagttaa totattgotti 3480 gaactaact agttatcaga toottigaaa agagaatatt tacaatata gactaattig 3540 gagaaaaga agtitigatt tattigtigti taaatgcaga tigatcatact 3560 gagaaaaga agtitigatt tattigtigti taaatgcaga toocaaagat tagtitottaag 3600 acctoctaaa tgoccoatat taaaagaact cattocatagg aaggititto attitiggigt 3660 gcaaccctgi cattacgtca acgcaacgto taactggaca toccaaagata aatggtacca 3720 gcgtoctott aaaagaagco tiaatccatat octtgaggac agaccttagi tgaaatgaa 3780 gcagaatgig ottotototg gcagctggoc tiotgctict gagtigcaca tiaaatcagat 3840 tagcotgtat totototogg gaacttaga aatggtica agacctigi gggtiggaga 3900 cgcctgitag gatoticaag toccatcata gaaaatgaa acacaagagti gitotgotga 3960 cgcctgitag gatoticaag toccatcata gaaaatgaa acacaagagti gitotgotga 3960 tagtitigg gatacgicoca totititaag ggatigctic catcaatic tggocaggac 4020 tcaccaaaag atccagcotc atacctacat cagacaaaaa atccgcgitig ticottotig 4080 actaaagata tigtititigo titigaaaca cocactacat tigcaatago cggacagaa 4140 gaatgaagat tacatgaata tattiggitia caaaaatgga gaaagtatit aataaaacct 4200 gttaattiti atactgacaa taaaaatgti tocacagata taaatgtaa caagacaaaa 4260 taaaatgaca gcaacttati tititaataa aaaaaaaaaa aaa 4303 4213 LERGINI 3011 4212 TIPE; DNA 4213 CREQUENCE: 138 gcgggaggag ggggggaga ggggggggg cgggggggg	acctagaaaa	ttggtctctc	tttttttaat	agctatttgc	taaatgctgt	tcttacacat	3300
ttgtaattt aagtggatt totatgoagg oagocagea gactagttaa totattgott 3480 ggacttaact agttatoaga tootttgaaa agagaatatt tacaatatta gactaatttg 3540 gggaaaatga agttttgatt tatttgggt taaatggtge tgtcagaega ttgttottag 3600 acctoctaaa tgcccoatat taaaaagaact cattoatagg aaggtgtte attttgggt 3660 gcaaccetg cattacgtca acgcaacgte tactoagga gagcttagtt attttgggt 3660 gcaaccetg cattacgtca acgcaacgt tactaggac tcccaagata aatggtacca 3720 gcgtcotctt aaaagatge ttaatccatt cottgaggac agacottagt tgaaatgata 3780 gcagaatgtg ottotoctg gcagotggec totgcttet gagttgoac taatcagat 3840 tagoctgtat totottcag gaactttgat aatggatc agacottag gggttgaga 3900 cgcctgttag gatcttoaag toccatcata gaaaattgaa acacagagtt gttotggaga 3900 cgcctgttag gatcttoaag toccatcata gaaaattgaa acacagagtt gttotgctga 3960 tagottggg gatacgtcc totttttaag ggattgott catctatte tggcaggac 4020 tcacacaaaag atccagcct atacctacat cagacaaaat atcgccgtg ttocttctgt 4080 actaaagtat tgtgtttg tttggaaca cocactcat ttgcaatag cgtgcaagat 4140 gaatgcagat tacactgate ttatgtgtta caaaattgga gaaagtatt aataaaacct 4200 gttaatttt atactgacaa taaaaatgtt totacagata ttaatgtta caaagacaaaa 4200 gttaatttt atactgacaa taaaaatgtt totacagata ttaatgtta caaagacaaaa 4200 gttaatttt tatactgacaa taaaaatgtt totacagata ttaatgttaa caagacaaaa 4200 sEQUENCE: 138 gccggggggg gggggggggggggggggggggggggg	aatttcttaa	ttttcaccga	gcagaggtgg	aaaaatactt	ttgctttcag	ggaaaatggt	3360
gacttaact agttatcaga teetttgaaa agagaatatt tacaatatat gactaatttg gggaaaatga agttttgatt tatttgtgtt taaatgetge tgtcagacga ttgttettag 3600 acetectaaa tgecccatat taaaagaact cattcatagg aaggtgtte attttggtgt 3600 gcaaccetgt cattacgea acgaacgte taactggact teecaagata aatggtacca 3720 gegteetett aaaagatgee ttaatccatt cettgaggae agacettagt tgaaatgata 3780 gcagaatgtg ettetetetg gcagetggee ttetgettet gagttgaca ttaatcagat 3840 tageetgtat teetetcag gaatttgat aatggetee agacettag gegttggaga 3900 egeetgttag gatetteaag teecaatata gaaaattgaa acacagagtt gttetgetga 3960 tagttttggg gatacgteea teettttaag ggattgette cateatate tggeaggace 4020 teaccaaaag atceagetee atacetacat cagacaaaat ategeegttg tteettetgt 4080 actaaagtat tgtgttttge tttggaaaca eccactcact ttgeaatage egtgeaagat gtaatttt atactgacaa taaaaatgtt tetacagata ttaatgtaa caagacaaaa 4260 taaatgtaat gggttttge tttttaataa aaaaaaaaa aaa 4303 <210 > SEQ ID NO 138 <211 > LENGTH: SINA <212 > TURTH: SINA <213 > ORGANISM: Homo sapiens							

acgggaagga gtttaagcag gagcatcgca ttggaggcta caaggtacga aaccagcact 1020

-continued

ggagcctcat	tatggaaagt	gtggtcccat	ctgacaaggg	aaattatacc	tgtgtagtgg	1080		
agaatgaata	cgggtccatc	aatcacacgt	accacctgga	tgttgtggag	cgatcgcctc	1140		
accggcccat	cctccaagcc	ggactgccgg	caaatgcctc	cacagtggtc	ggaggagacg	1200		
tagagtttgt	ctgcaaggtt	tacagtgatg	cccagcccca	catccagtgg	atcaagcacg	1260		
tggaaaagaa	cggcagtaaa	tacgggcccg	acgggctgcc	ctacctcaag	gttctcaagc	1320		
actcggggat	aaatagttcc	aatgcagaag	tgctggctct	gttcaatgtg	accgaggcgg	1380		
atgctgggga	atatatatgt	aaggtctcca	attatatagg	gcaggccaac	cagtctgcct	1440		
ggctcactgt	cctgccaaaa	cagcaagcgc	ctggaagaga	aaaggagatt	acagetteee	1500		
cagactacct	ggagatagcc	atttactgca	taggggtctt	cttaatcgcc	tgtatggtgg	1560		
taacagtcat	cctgtgccga	atgaagaaca	cgaccaagaa	gccagacttc	agcagccagc	1620		
cggctgtgca	caagctgacc	aaacgtatcc	ccctgcggag	acaggtaaca	gtttcggctg	1680		
agtccagctc	ctccatgaac	tccaacaccc	cgctggtgag	gataacaaca	cgcctctctt	1740		
caacggcaga	cacccccatg	ctggcagggg	tctccgagta	tgaacttcca	gaggacccaa	1800		
aatgggagtt	tccaagagat	aagctgacac	tgggcaagcc	cctgggagaa	ggttgctttg	1860		
ggcaagtggt	catggcggaa	gcagtgggaa	ttgacaaaga	caagcccaag	gaggcggtca	1920		
ccgtggccgt	gaagatgttg	aaagatgatg	ccacagagaa	agacctttct	gatctggtgt	1980		
cagagatgga	gatgatgaag	atgattggga	aacacaagaa	tatcataaat	cttcttggag	2040		
cctgcacaca	ggatgggcct	ctctatgtca	tagttgagta	tgcctctaaa	ggcaacctcc	2100		
gagaatacct	ccgagcccgg	aggccacccg	ggatggagta	ctcctatgac	attaaccgtg	2160		
ttcctgagga	gcagatgacc	ttcaaggact	tggtgtcatg	cacctaccag	ctggccagag	2220		
gcatggagta	cttggcttcc	caaaaatgta	ttcatcgaga	tttagcagcc	agaaatgttt	2280		
tggtaacaga	aaacaatgtg	atgaaaatag	cagactttgg	actcgccaga	gatatcaaca	2340		
atatagacta	ttacaaaaag	accaccaatg	ggcggcttcc	agtcaagtgg	atggctccag	2400		
aagccctgtt	tgatagagta	tacactcatc	agagtgatgt	ctggtccttc	ggggtgttaa	2460		
tgtgggagat	cttcacttta	gggggctcgc	cctacccagg	gattcccgtg	gaggaacttt	2520		
ttaagctgct	gaaggaagga	cacagaatgg	ataagccagc	caactgcacc	aacgaactgt	2580		
acatgatgat	gagggactgt	tggcatgcag	tgccctccca	gagaccaacg	ttcaagcagt	2640		
tggtagaaga	cttggatcga	attctcactc	tcacaaccaa	tgagatctga	aagtttatgg	2700		
cttcattgag	aaactgggaa	aagttggtca	ggcgcagtgg	ctcatgcctg	taatcccagc	2760		
actttgggag	gccgaggcag	gcggatcatg	aggtcaggag	ttccagacca	gcctggccaa	2820		
catggtgaaa	ccctgtctct	actaaagata	caaaaaatta	gccgggcgtg	ttggtgtgca	2880		
cctgtaatcc	cagctactcc	gggaggctga	ggcaggagag	tcacttgaac	cggggaggcg	2940		
gaggttgcag	tgagccgaga	tcatgccatt	gcattccagc	cttggcgaca	gagcgagact	3000		
ccgtctcaaa	a					3011		
<210> SEQ 1 <211> LENG <212> TYPE <213> ORGAN	ΓH: 4286	sapiens						
<400> SEQUE	ENCE: 139							
gtcgcgggca	gctggcgccg	cgcggtcctg	ctctgccggt	cgcacggacg	caccggcggg	60		

gtegegggea getggegeeg egeggteetg etetgeeggt egeaeggaeg eaceggeggg 60 eegeeggeeg gagggaeggg gegggagetg ggeeegegga eagegageeg gagegggage 120

cgcgcgtagc	gagccgggct	ccggcgctcg	ccagtctccc	gageggegee	cgcctcccgc	180
cggtgcccgc	geegggeegt	ggggggcagc	atgeeegege	gegetgeetg	aggacgccgc	240
ggcccccgcc	cccgccatgg	gcgcccctgc	ctgcgccctc	gcgctctgcg	tggccgtggc	300
catcgtggcc	ggcgcctcct	cggagtcctt	ggggacggag	cagegegteg	tggggcgagc	360
ggcagaagtc	ccgggcccag	ageceggeca	gcaggagcag	ttggtcttcg	gcagcgggga	420
tgctgtggag	ctgagctgtc	ccccgcccgg	gggtggtccc	atggggccca	ctgtctgggt	480
caaggatggc	acagggctgg	tgccctcgga	gegtgteetg	gtggggcccc	agcggctgca	540
ggtgctgaat	geeteecaeg	aggactccgg	ggcctacagc	tgccggcagc	ggctcacgca	600
gcgcgtactg	tgccacttca	gtgtgcgggt	gacagacgct	ccatcctcgg	gagatgacga	660
agacggggag	gacgaggctg	aggacacagg	tgtggacaca	ggggcccctt	actggacacg	720
gcccgagcgg	atggacaaga	agetgetgge	cgtgccggcc	gccaacaccg	tccgcttccg	780
ctgcccagcc	gctggcaacc	ccactccctc	catctcctgg	ctgaagaacg	gcagggagtt	840
ccgcggcgag	caccgcattg	gaggcatcaa	gctgcggcat	cagcagtgga	gcctggtcat	900
ggaaagcgtg	gtgccctcgg	accgcggcaa	ctacacctgc	gtcgtggaga	acaagtttgg	960
cagcatccgg	cagacgtaca	cgctggacgt	gctggagcgc	teceegeace	ggcccatcct	1020
gcaggcgggg	ctgccggcca	accagacggc	ggtgctgggc	agcgacgtgg	agttccactg	1080
caaggtgtac	agtgacgcac	agececacat	ccagtggctc	aagcacgtgg	aggtgaatgg	1140
cagcaaggtg	ggcccggacg	gcacacccta	cgttaccgtg	ctcaagacgg	cgggcgctaa	1200
caccaccgac	aaggagctag	aggttetete	cttgcacaac	gtcacctttg	aggacgccgg	1260
ggagtacacc	tgeetggegg	gcaattctat	tgggttttct	catcactctg	cgtggctggt	1320
ggtgctgcca	gccgaggagg	agctggtgga	ggctgacgag	gegggeagtg	tgtatgcagg	1380
catcctcagc	tacggggtgg	gettetteet	gttcatcctg	gtggtggcgg	ctgtgacgct	1440
ctgccgcctg	cgcagccccc	ccaagaaagg	cctgggctcc	cccaccgtgc	acaagatctc	1500
ccgcttcccg	ctcaagcgac	aggtgtccct	ggagtccaac	gcgtccatga	gctccaacac	1560
accactggtg	cgcatcgcaa	ggctgtcctc	aggggagggc	cccacgctgg	ccaatgtctc	1620
cgagctcgag	ctgcctgccg	accccaaatg	ggagetgtet	cgggcccggc	tgaccctggg	1680
caagcccctt	ggggagggct	gcttcggcca	ggtggtcatg	gcggaggcca	tcggcattga	1740
caaggaccgg	gccgccaagc	ctgtcaccgt	agccgtgaag	atgctgaaag	acgatgccac	1800
tgacaaggac	ctgtcggacc	tggtgtctga	gatggagatg	atgaagatga	tcgggaaaca	1860
caaaaacatc	atcaacctgc	tgggcgcctg	cacgcagggc	gggcccctgt	acgtgctggt	1920
ggagtacgcg	gccaagggta	acctgcggga	gtttctgcgg	gegeggegge	ccccgggcct	1980
ggactactcc	ttcgacacct	gcaagccgcc	cgaggagcag	ctcaccttca	aggacctggt	2040
gtcctgtgcc	taccaggtgg	cccggggcat	ggagtacttg	gcctcccaga	agtgcatcca	2100
cagggacctg	gctgcccgca	atgtgctggt	gaccgaggac	aacgtgatga	agatcgcaga	2160
cttcgggctg	gcccgggacg	tgcacaacct	cgactactac	aagaagacga	ccaacggccg	2220
gctgcccgtg	aagtggatgg	cgcctgaggc	cttgtttgac	cgagtctaca	ctcaccagag	2280
tgacgtctgg	tcctttgggg	tcctgctctg	ggagatette	acgctggggg	gctccccgta	2340
ccccggcatc	cctgtggagg	agctcttcaa	gctgctgaag	gagggccacc	gcatggacaa	2400
gecegecaae	tgcacacacq	acctgtacat	gatcatgcqq	gagtgctggc	atgeegegee	2460
-		-	5 55			

-continued

-concinued	
ctcccagagg cccaccttca agcagctggt ggaggacctg gaccgtgtcc ttaccgtgac	2520
gtccaccgac gagtacctgg acctgtcggc gcctttcgag cagtactccc cgggtggcca	2580
ggacaccccc agetecaget eeteagggga egacteegtg tttgeecaeg acetgetgee	2640
cccggcccca cccagcagtg ggggctcgcg gacgtgaagg gccactggtc cccaacaatg	2700
tgaggggtcc ctagcagccc accetgetge tggtgcacag ccaeteceeg geatgagaet	2760
cagtgcagat ggagagacag ctacacagag ctttggtctg tgtgtgtgtg tgtgcgtgtg	2820
tgtgtgtgtg tgtgcacatc cgcgtgtgcc tgtgtgcgtg cgcatcttgc ctccaggtgc	2880
agaggtaccc tgggtgtccc cgctgctgtg caacggtctc ctgactggtg ctgcagcacc	2940
gaggggcctt tgttctgggg ggacccagtg cagaatgtaa gtgggcccac ccggtgggac	3000
ccccgtgggg cagggagctg ggcccgacat ggctccggcc tctgcctttg caccacggga	3060
catcacaggg tgggcctcgg cccctcccac acccaaagct gagcctgcag ggaagcccca	3120
catgtecage accttgtgce tggggtgtta gtggcaccge etceecacct ecaggettte	3180
ccacttccca ccctgcccct cagagactga aattacgggt acctgaagat gggagccttt	3240
accttttatg caaaaggttt attccggaaa ctagtgtaca tttctataaa tagatgctgt	3300
gtatatggta tatatacata tatatata acatatatgg aagaggaaaa ggctggtaca	3360
acggaggcct gcgaccctgg gggcacagga ggcaggcatg gccctgggcg gggcgtgggg	3420
gggcgtggag ggaggcccca gggggtctca cccatgcaag cagaggacca gggccttttc	3480
tggcaccgca gttttgtttt aaaactggac ctgtatattt gtaaagctat ttatgggccc	3540
ctggcactct tgttcccaca ccccaacact tccagcattt agctggccac atggcggaga	3600
gttttaattt ttaacttatt gacaaccgag aaggtttatc ccgccgatag agggacggcc	3660
aagaatgtac gtccagcctg ccccggagct ggaggatccc ctccaagcct aaaaggttgt	3720
taatagttgg aggtgattcc agtgaagata ttttatttcc tttgtccttt ttcaggagaa	3780
ttagatttct ataggatttt tctttaggag atttattttt tggacttcaa agcaagctgg	3840
tattttcata caaattcttc taattgctgt gtgtcccagg cagggagacg gtttccaggg	3900
aggggccggc cctgtgtgca ggttccgatg ttattagatg ttacaaagttt atatatct	3960
atatatataa tttattgagt ttttacaaga tgtatttgtt gtagacttaa cacttcttac	4020
gcaatgcttc tagagtttta tagcctggac tgctaccttt caaagcttgg agggaagccg	4080
tgaattcagt tggttcgttc tgtactgtta ctgggccctg agtctgggca gctgtccctt	4140
gcttgcctgc agggccatgg ctcagggtgg tctcttcttg gggcccagtg catggtggcc	4200
agaggtgtca cccaaaccgg caggtgcgat tttgttaacc cagcgacgaa ctttccgaaa	4260
aataaagaca cctggttgct aacctg	4286
<210> SEQ ID NO 140 <211> LENGTH: 3950 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 140	
gtegegggea getggegeeg egeggteetg etetgeeggt egeaeggaeg eaceggeggg	60
ccgccggccg gagggacggg gcgggagctg ggcccgcgga cagcgagccg gagcgggagc	120
egegegtage gageeggget eeggegeteg eeagteteee gageggege egeeteeege	180
eggtgeege geegggeegt ggggggeage atgeeegge gegetgeetg aggaegeege	240

ggececegee ecegecatgg gegeceetge etgegecete gegetetgeg tggeegtgge

catcgtggcc	ggcgcctcct	cggagtcctt	ggggacggag	cagcgcgtcg	tggggcgagc	360
ggcagaagtc	ccgggcccag	agcccggcca	gcaggagcag	ttggtcttcg	gcagcgggga	420
tgctgtggag	ctgagctgtc	ccccgcccgg	gggtggtccc	atggggccca	ctgtctgggt	480
caaggatggc	acagggctgg	tgccctcgga	gegtgteetg	gtggggcccc	ageggetgea	540
ggtgctgaat	gcctcccacg	aggactccgg	ggcctacagc	tgccggcagc	ggctcacgca	600
gcgcgtactg	tgccacttca	gtgtgcgggt	gacagacgct	ccatcctcgg	gagatgacga	660
agacggggag	gacgaggctg	aggacacagg	tgtggacaca	ggggcccctt	actggacacg	720
gcccgagcgg	atggacaaga	agetgetgge	cgtgccggcc	gccaacaccg	tccgcttccg	780
ctgcccagcc	gctggcaacc	ccactccctc	catctcctgg	ctgaagaacg	gcagggagtt	840
ccgcggcgag	caccgcattg	gaggcatcaa	gctgcggcat	cagcagtgga	gcctggtcat	900
ggaaagcgtg	gtgccctcgg	accgcggcaa	ctacacctgc	gtcgtggaga	acaagtttgg	960
cagcateegg	cagacgtaca	cgctggacgt	gctggagcgc	teceegeace	ggcccatcct	1020
gcaggcgggg	ctgccggcca	accagacggc	ggtgctgggc	agcgacgtgg	agttccactg	1080
caaggtgtac	agtgacgcac	agccccacat	ccagtggctc	aagcacgtgg	aggtgaatgg	1140
cagcaaggtg	ggcccggacg	gcacacccta	cgttaccgtg	ctcaaggtgt	ccctggagtc	1200
caacgcgtcc	atgagctcca	acacaccact	ggtgcgcatc	gcaaggctgt	cctcagggga	1260
gggccccacg	ctggccaatg	tctccgagct	cgagctgcct	gccgacccca	aatgggagct	1320
gtctcgggcc	cggctgaccc	tgggcaagcc	ccttggggag	ggctgcttcg	gccaggtggt	1380
catggcggag	gccatcggca	ttgacaagga	ccgggccgcc	aagcctgtca	ccgtagccgt	1440
gaagatgctg	aaagacgatg	ccactgacaa	ggacctgtcg	gacctggtgt	ctgagatgga	1500
gatgatgaag	atgatcggga	aacacaaaaa	catcatcaac	ctgctgggcg	cctgcacgca	1560
gggcgggccc	ctgtacgtgc	tggtggagta	cgcggccaag	ggtaacctgc	gggagtttct	1620
gegggegegg	cggcccccgg	gcctggacta	ctccttcgac	acctgcaagc	cgcccgagga	1680
gcagctcacc	ttcaaggacc	tggtgtcctg	tgcctaccag	gtggcccggg	gcatggagta	1740
cttggcctcc	cagaagtgca	tccacaggga	cctggctgcc	cgcaatgtgc	tggtgaccga	1800
ggacaacgtg	atgaagatcg	cagacttcgg	getggeeegg	gacgtgcaca	acctcgacta	1860
ctacaagaag	acgaccaacg	gccggctgcc	cgtgaagtgg	atggcgcctg	aggccttgtt	1920
tgaccgagtc	tacactcacc	agagtgacgt	ctggtccttt	ggggtcctgc	tctgggagat	1980
cttcacgctg	gggggctccc	cgtaccccgg	catccctgtg	gaggagetet	tcaagctgct	2040
gaaggagggc	caccgcatgg	acaagcccgc	caactgcaca	cacgacctgt	acatgatcat	2100
gegggagtge	tggcatgccg	cgccctccca	gaggcccacc	ttcaagcagc	tggtggagga	2160
cctggaccgt	gtccttaccg	tgacgtccac	cgacgagtac	ctggacctgt	cggcgccttt	2220
cgagcagtac	tccccgggtg	gccaggacac	ccccagctcc	agctcctcag	gggacgactc	2280
cgtgtttgcc	cacgacctgc	tgcccccggc	cccacccagc	agtgggggct	cgcggacgtg	2340
aagggccact	ggtccccaac	aatgtgaggg	gtccctagca	gcccaccctg	ctgctggtgc	2400
acagccactc	cccggcatga	gactcagtgc	agatggagag	acagctacac	agagctttgg	2460
tctgtgtgtg	tgtgtgtgcg	tgtgtgtgtg	tgtgtgtgca	catccgcgtg	tgcctgtgtg	2520
cgtgcgcatc	ttgcctccag	gtgcagaggt	accctgggtg	tccccgctgc	tgtgcaacgg	2580
tctcctgact	ggtgctgcag	caccgagggg	cctttgttct	ggggggaccc	agtgcagaat	2640

-continued

-continued	
gtaagtgggc ccaccoggtg ggacccccgt ggggcaggga gctgggcccg acatggctcc	2700
ggcctctgcc tttgcaccac gggacatcac agggtgggcc tcggcccctc ccacacccaa	2760
agetgageet geagggaage eccaeatgte eageacettg tgeetggggt gttagtggea	2820
ccgcctcccc acctccagge tttcccactt cccaccctgc ccctcagaga ctgaaattac	2880
gggtacctga agatgggagc ctttaccttt tatgcaaaag gtttattccg gaaactagtg	2940
tacatttcta taaatagatg ctgtgtatat ggtatatata catatatata tataacatat	3000
atggaagagg aaaaggctgg tacaacggag gcctgcgacc ctgggggcac aggaggcagg	3060
catggccctg ggcggggcgt gggggggcgt ggagggaggc cccagggggt ctcacccatg	3120
caagcagagg accagggcct tttctggcac cgcagttttg ttttaaaact ggacctgtat	3180
atttgtaaag ctatttatgg gcccctggca ctcttgttcc cacaccccaa cacttccagc	3240
atttagctgg ccacatggcg gagagtttta atttttaact tattgacaac cgagaaggtt	3300
tatecegeeg atagagggae ggeeaagaat gtaegteeag eetgeeeegg agetggagga	3360
tcccctccaa gcctaaaagg ttgttaatag ttggaggtga ttccagtgaa gatattttat	3420
ttcctttgtc ctttttcagg agaattagat ttctatagga tttttcttta ggagatttat	3480
tttttggact tcaaagcaag ctggtatttt catacaaatt cttctaattg ctgtgtgtcc	3540
caggcaggga gacggtttcc agggaggggc cggccctgtg tgcaggttcc gatgttatta	3600
gatgttacaa gtttatatat atctatatat ataatttatt gagtttttac aagatgtatt	3660
tgttgtagac ttaacacttc ttacgcaatg cttctagagt tttatagcct ggactgctac	3720
ctttcaaagc ttggagggaa gccgtgaatt cagttggttc gttctgtact gttactgggc	3780
cetgagtetg ggeagetgte cettgettge etgeagggee atggeteagg gtggtetett	3840
cttggggccc agtgcatggt ggccagaggt gtcacccaaa ccggcaggtg cgattttgtt	3900
aacccagcga cgaactttcc gaaaaataaa gacacctggt tgctaacctg	3950
<210> SEQ ID NO 141 <211> LENGTH: 2085 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 141	
atgggegeee etgeetgege eetegegete tgegtggeeg tggeeategt ggeeggegee	60
teeteggagt eettggggae ggageagege gtegtgggge gageggeaga agteeeggge	120
ccagageceg gecageagga geagttggte tteggeageg gggatgetgt ggagetgage	180
tgtcccccgc ccgggggtgg tcccatgggg cccactgtct gggtcaagga tggcacaggg	240
ctggtgccct cggagcgtgt cctggtgggg ccccagcggc tgcaggtgct gaatgcctcc	300
cacgaggact ccggggccta cagctgccgg cagcggctca cgcagcgcgt actgtgccac	360
ttcagtgtgc gggtgacaga cgctccatcc tcgggagatg acgaagacgg ggaggacgag	420
gctgaggaca caggtgtgga cacaggggcc ccttactgga cacggcccga gcggatggac	480
aagaagetge tggeegtgee ggeegeeaac accgteeget teegetgeec ageegetgge	540
aaccccacte cetecatete etggetgaag aacggeaggg agtteegegg egageacege	600
attggaggca tcaagctgcg gcatcagcag tggagcctgg tcatggaaag cgtggtgccc	660
toggacogog gcaactacac otgogtogtg gagaacaagt ttggcagcat coggcagacg	720
tacacgotgg acgtgotgga gogotococg cacoggocca tootgcaggo ggggotgcog	780

gccaaccaga cggcggtgct gggcagcgac gtggagttcc actgcaaggt gtacagtgac

gcacagcccc	acatccagtg	gctcaagcac	gtggaggtga	acggcagcaa	ggtgggcccg	900
gacggcacac	cctacgttac	cgtgctcaag	gtgtccctgg	agtccaacgc	gtccatgagc	960
tccaacacac	cactggtgcg	catcgcaagg	ctgtcctcag	gggagggccc	cacgctggcc	1020
aatgtctccg	agctcgagct	gcctgccgac	cccaaatggg	agetgteteg	ggeeeggetg	1080
accctgggca	agccccttgg	ggagggctgc	ttcggccagg	tggtcatggc	ggaggccatc	1140
ggcattgaca	aggaccgggc	cgccaagcct	gtcaccgtag	ccgtgaagat	gctgaaagac	1200
gatgccactg	acaaggacct	gtcggacctg	gtgtctgaga	tggagatgat	gaagatgatc	1260
gggaaacaca	aaaacatcat	caacctgctg	ggcgcctgca	cgcagggcgg	gcccctgtac	1320
gtgctggtgg	agtacgcggc	caagggtaac	ctgcgggagt	ttctgcgggc	geggeggeee	1380
cegggeetgg	actactcctt	cgacacctgc	aagccgcccg	aggagcagct	caccttcaag	1440
gacctggtgt	cctgtgccta	ccaggtggcc	cggggcatgg	agtacttggc	ctcccagaag	1500
tgcatccaca	gggacctggc	tgcccgcaat	gtgctggtga	ccgaggacaa	cgtgatgaag	1560
atcgcagact	tcgggctggc	ccgggacgtg	cacaacctcg	actactacaa	gaagacaacc	1620
aacggccggc	tgcccgtgaa	gtggatggcg	cctgaggcct	tgtttgaccg	agtctacact	1680
caccagagtg	acgtctggtc	ctttggggtc	ctgctctggg	agatetteae	gctggggggc	1740
tccccgtacc	ccggcatccc	tgtggaggag	ctcttcaagc	tgctgaagga	gggccaccgc	1800
atggacaagc	ccgccaactg	cacacacgac	ctgtacatga	tcatgcggga	gtgctggcat	1860
gccgcgccct	cccagaggcc	caccttcaag	cagctggtgg	aggacctgga	ccgtgtcctt	1920
accgtgacgt	ccaccgacga	gtacctggac	ctgtcggcgc	ctttcgagca	gtactccccg	1980
ggtggccagg	acacccccag	ctccagctcc	tcaggggacg	actccgtgtt	tgcccacgac	2040
ctgctgcccc	cggccccacc	cagcagtggg	ggctcgcgga	cgtga		2085
<210> SEQ <211> LENG <212> TYPE <213> ORGA	TH: 4431	sapiens				
<400> SEQU	ENCE: 142					
aggegggget	ggagtggtgg	aaggggggtg	gcaggtctgc	attgccgctt	ccctggtgcc	60
gggagcagtc	gccgctgccg	cctccgcccg	cggccgggac	ccccgtcctc	geeegggaet	120
ccttacccgg	ggaacctaga	ccaggtctcc	agaggcttgt	ggaagaagaag	caggcgaccc	180
ttcctgagtt	atcctggctt	agcctcccaa	tetggeteee	cttccccttc	ccattcccct	240
gctcccctg	tcccttcccc	atccacccaa	ctgaactggg	tataggtcaa	agctcctctc	300
tttccttttc	cttcctaggc	actcattggc	taggacctgt	ttgctctttt	ttttgtgccc	360
agagatactg	gaacacgctt	catctaagta	actgtgggga	ggggtctttt	tgactctaca	420
agtccttgag	caaaaagctg	aaaaagaagc	aggaggtgga	gaagacccag	tgaagtgccc	480
caagccccat	catggaagag	ggcttccgag	accgggcagc	tttcatccgt	ggggccaaag	540
acattgctaa	ggaagtcaaa	aagcatgcgg	ccaagaaggt	ggtgaagggc	ctggacagag	600
tccaggacga	atattcccga	agategtaet	cccgctttga	ggaggaggat	gatgatgatg	660
acttccctgc	teccagtgat	ggttattacc	gaggagaagg	gacccaggat	gaggaggaag	720
gtggtgcatc	cagtgatgct	actgagggcc	atgacgagga	tgatgagatc	tatgaagggg	780

aatatcaggg cattccccgg gcagagtctg ggggcaaagg cgagcggatg gcagatgggg

cgcccctggc	tggagtaagg	gggggcttga	gtgatgggga	gggtccccct	gggggccggg	900	
gggaggcaca	acgacggaaa	gaacgagaag	aactggccca	acagtatgaa	gccatcctac	960	
gggagtgtgg	ccacggccgc	ttccagtgga	cactgtattt	tgtgcttggt	ctggcgctga	1020	
tggctgacgg	tgtggaggtc	tttgtggtgg	gettegtget	gcccagcgct	gagaaagaca	1080	
tgtgcctgtc	cgactccaac	aaaggcatgc	taggcctcat	cgtctacctg	ggcatgatgg	1140	
tgggagcctt	cctctgggga	ggtctggctg	accggctggg	teggaggeag	tgtctgctca	1200	
tctcgctctc	agtcaacagc	gtettegeet	tcttctcatc	ttttgtccag	ggttacggca	1260	
ctttcctctt	ctgccgccta	ctttctgggg	ttgggattgg	agggtccatc	cccattgtct	1320	
tctcctattt	ctccgagttt	ctggcccagg	agaaacgagg	ggagcatttg	agctggctct	1380	
gcatgttttg	gatgattggt	ggcgtgtacg	cagctgctat	ggcctgggcc	atcatccccc	1440	
actatgggtg	gagttttcag	atgggttctg	cctaccagtt	ccacagctgg	agggtcttcg	1500	
tcctcgtctg	cgcctttcct	tctgtgtttg	ccattggggc	tctgaccacg	cagcctgaga	1560	
gcccccgttt	cttcctagag	aatggaaagc	atgatgaggc	ctggatggtg	ctgaagcagg	1620	
tccatgatac	caacatgcga	gccaaaggac	atcctgagcg	agtgttctca	gtaacccaca	1680	
ttaagacgat	tcatcaggag	gatgaattga	ttgagatcca	gtcggacaca	gggacctggt	1740	
accagegetg	gggggtccgg	gccttgagcc	taggggggca	ggtttggggg	aattttctct	1800	
cctgttttgg	tcccgaatat	cggcgcatca	ctctgatgat	gatgggtgtg	tggttcacca	1860	
tgtcattcag	ctactatggc	ctgaccgtct	ggtttcctga	catgateege	catctccagg	1920	
cagtggacta	cgcatcccgc	accaaagtgt	teecegggga	gcgcgtagag	catgtaactt	1980	
ttaacttcac	gttggagaat	cagatccacc	gaggcgggca	gtacttcaat	gacaagttca	2040	
ttgggctgcg	gctcaagtca	gtgtcctttg	aggattccct	gtttgaagag	tgttattttg	2100	
aggatgtcac	atccagcaac	acgtttttcc	gcaactgcac	attcatcaac	actgtgttct	2160	
ataacactga	cctgttcgag	tacaagtttg	tgaacagccg	tctgataaac	agtacattcc	2220	
tgcacaacaa	ggagggctgc	ccgctagacg	tgacagggac	gggcgaaggt	gcctacatgg	2280	
tatactttgt	gagetteetg	gggacactgg	cagtgettee	tgggaatatc	gtgtctgccc	2340	
tgctcatgga	caagatcggc	aggctcagaa	tgcttgctgg	ctccagcgtg	atgtcctgtg	2400	
tctcctgctt	cttcctgtct	tttgggaaca	gtgagtegge	catgateget	ctgctctgcc	2460	
tttttggcgg	ggtcagcatt	gcatcctgga	atgcgctgga	cgtgttgact	gttgaactct	2520	
acccctcaga	caagaggacc	acagcttttg	gcttcctgaa	tgccctgtgt	aagctggcag	2580	
ctgtgctggg	gatcagcatc	ttcacatcct	tcgtgggaat	caccaaggct	gcacccatcc	2640	
tctttgcctc	agctgccctt	gcccttggca	gctctctggc	cctgaagctg	cctgagaccc	2700	
gggggcaggt	gctgcagtga	aggggtctct	agggctttgg	gattggcagg	cacactgtga	2760	
gaccaacaac	teetteette	ccctccctgc	cctgccatcc	tgacctccag	agccctcact	2820	
ccccactccc	cgtgtttggt	gtcttagctg	tgtgtgcgtg	tgcgtgtgca	tgtgtgtaaa	2880	
ccccgtgggc	agggactaca	gggaaggctc	cttcatccca	gttttgagat	gaagctgtac	2940	
tccccatttc	ccactgccct	tgactttgca	caagagaagg	ctgagcccca	tccttctccc	3000	
		gcttccctgt				3060	
		taggeeetgg				3120	
						3180	
		catggaccaa					
tegggtgeee	tctcacatct	cctgttggat	gctgggggag	aagcaataaa	cctcagccct	3240	

ctggcctcca	ctttcctctc	aatttgggct	gcaaatatga	agcctgaatt	ttatgaaatt	3300			
agctttctga	ttcttattta	ttaatagatt	aagttctgag	gcagctccgc	aggactgtgt	3360			
gtgaatgtgt	atgtatactt	acatatgtgt	gtgcatgtgc	catggggcgg	ggggtatcac	3420			
tatactgtcc	tcaaatataa	gccaagggta	atttcagcgg	atgcacacac	aaccctgcct	3480			
cccacagttc	ctcccctaat	ctggtttctg	tgttgagcct	gggatggagg	agccctaggc	3540			
cagcctggga	taagagtccc	acagtctagg	gagatctgag	ggcatccgac	aaggcccatc	3600			
teetteeete	ctcaagaagc	agaggcctcc	tctggagtga	gaggctccac	ccactacage	3660			
acaggcggga	atagcacagc	tgccctccca	tgctccctac	ctgtcccctc	acagggaggg	3720			
gagcagggga	gggaaagaaa	ccaggcatct	ggtcaaacca	gcagatcaaa	aagcacaaag	3780			
agctggggca	gaggcaggaa	gcaggggccc	teetggeage	teetetgagt	ggggagaggt	3840			
tgggcagtga	gtgagggacc	cctaatgcag	ggactagaag	cctcagtttc	cccattttac	3900			
ccttccacac	aatagcctct	gtaggttagg	ctgccccatc	ccaccctact	ctgtgtggct	3960			
gctttctttg	gtgccctccc	ctcaccccac	tgtagctgtg	acgtgttgta	gtttttagat	4020			
gtttgtaaaa	tgtttaaaaa	aatgttaaaa	ggaaaaaagt	gaaaataaca	aaaaagaaaa	4080			
tcaaaattca	ccttcgtcat	gctgcgtcca	gtgccccaac	cctgtggtca	ctctccccat	4140			
tttgtaacac	tgtaccaggt	ggtgactgtt	taactctttg	gtgtctgtgc	tcaaaagact	4200			
gccttctcca	gtgcccagtg	tatgagtgtg	tgccctgtgc	ccttgtccct	cactccccac	4260			
atgctggacg	tagccctctt	cctcgcaccc	ctgggaggga	cccatccatc	tcccttgctc	4320			
teetggggaa	ccctaaaccc	aactctgttg	atgtgaaaaa	tgcagtgaaa	aatattgacg	4380			
aaaaataaaa	cggaaacaaa	tcctcaaaat	acaaaaaaaa	aaaaaaaaa	а	4431			
<210> SEQ ID NO 143 <211> LENGTH: 5311 <212> TYPE: DNA <213> ORGANISM: Homo sapiens									
<400> SEQU	ENCE: 143								
agcataacct	teggtggeag	gacaaatcag	gccagcacgc	agtctgccaa	gtcctgctcg	60			
	agaaaaacag					120			
ctgagtctct	gaaggagacc	agagettgaa	actttccaga	cttccaacag	acatcgagtg	180			
	tttaggttgt					240			
	tgactttcac		_		_	300			
	ggttattgaa					360			
	aggcagtcgc			_		420			
	gctcccagtg					480			
tgcacagagt	gatgtcaccg	aaggccatga	tgaggaagac	gagatctatg	agggcgagta	540			
ccagggtatc	cctcacccag	atgatgtcaa	ggccaagcag	gccaagatgg	cgccctccag	600			
aatggacagc	cttcggggcc	agacagacct	gatggctgag	aggctggaag	atgaggagca	660			
gttggcccac	cagtacgaga	ccatcatgga	tgagtgtggc	catggccgct	tccagtggat	720			
cctcttttc	gtcttgggtt	tggccctgat	ggccgatggg	gtggaagtgt	tcgtggtgag	780			
ttttgccctg	cccagtgcag	agaaggacat	gtgtctgtcc	agttccaaaa	aaggaatgct	840			

agggatgata gtctacttgg gaatgatggc gggcgccttc atcctgggag gcctggctga

taaqctqqqa	aggaagcgag	tcctcagcat	gtctctggcc	gtcaatgcct	ccttcqcctc	960	
		gatatggagc				1020	
cggtattggg	ggtgctctac	cgattgtttt	tgcctatttt	tctgaattct	tgtctcggga	1080	
gaagcgagga	gaacacctca	gttggctggg	catcttctgg	atgactgggg	gcctgtacgc	1140	
atctgccatg	gcctggagca	tcatcccaca	ctatggctgg	ggcttcagca	tggggaccaa	1200	
ttaccacttc	catagctgga	gagtgtttgt	catcgtctgt	getetgeeet	gcaccgtgtc	1260	
catggtggcc	ctgaagttca	tgccagagag	cccaaggttt	ctgctagaga	tgggcaaaca	1320	
tgatgaagcc	tggatgattc	tcaagcaagt	ccatgacacc	aacatgagag	ctaaggggac	1380	
cccagagaaa	gtgttcacgg	tttccaacat	caaaactccc	aagcaaatgg	atgaattcat	1440	
tgagatccaa	agttcaacag	gaacctggta	ccagcgctgg	ctggtcagat	tcaagaccat	1500	
tttcaagcag	gtctgggata	atgccctgta	ctgtgtgatg	gggccctaca	gaatgaatac	1560	
actgattctg	gccgtggttt	ggtttgccat	ggcattcagt	tactatggac	tgacagtttg	1620	
gtttcctgat	atgateeget	attttcaaga	tgaagaatac	aagtctaaaa	tgaaggtgtt	1680	
ttttggtgag	catgtgtacg	gegeeacaat	caacttcacg	atggaaaatc	agatccacca	1740	
acatgggaaa	cttgtgaatg	ataagttcac	aagaatgtac	tttaaacatg	tactctttga	1800	
ggacacattc	tttgacgagt	gctattttga	agacgtaaca	tcaacagata	cctacttcaa	1860	
aaattgtacc	attgaatcaa	ccatctttta	caacacagac	ctctacgagc	acaagttcat	1920	
caactgtcgg	tttatcaact	ccaccttcct	ggagcagaag	gagggctgcc	acatggactt	1980	
ggagcaagat	aatgacttcc	tgatttacct	cgtcagcttc	ctgggcagcc	tgtctgtctt	2040	
acccgggaac	atcatttctg	ccctgctcat	ggatagaatt	ggaaggctca	agatgattgg	2100	
tggctccatg	ctaatctctg	cagtctgctg	cttcttcctg	ttttttggca	acagtgagtc	2160	
tgcaatgatc	ggctggcagt	gcctgttctg	tgggacaagc	attgcagcct	ggaatgctct	2220	
ggatgtgatc	acagtggagc	tgtatcccac	caaccagaga	gcaacagcct	tcggcattct	2280	
caatggatta	tgcaaatttg	gcgccatcct	gggaaacacc	atctttgctt	cttttgttgg	2340	
gataaccaaa	gtggtcccca	tccttctggc	tgctgcttct	ctggttgggg	gtggcctgat	2400	
tgcccttcga	ctgccagaga	ctcgagaaca	ggtcctgatg	tgaacaacct	atgggaaaag	2460	
gaaaggtcga	gagaatcttg	tccaggacac	tgaaatgcat	ccacacttcc	tgcctatcac	2520	
ggtccggagg	acaccttgga	tagcacggga	ggagaagttg	actttgtgac	ccctagttta	2580	
ggacccactt	cagctgtcaa	tatgtttgta	actcaggtga	ctgatttggg	ggtgccctga	2640	
gccaccctta	gaatcacaga	gctgcgtgtt	taacttcaag	tcttcccagt	ccaaggcagg	2700	
gagaggattc	tccagtgagt	gcacacacta	tgcgaggagc	aagcatttct	ctaagtcaag	2760	
tgcaaggact	taacttgcgt	ttgaaaagga	attagagggt	cagaaacacc	caggttcctc	2820	
cagaaagctc	cttggagccc	aacaacttaa	caaatcaact	tggctggaag	ttagagtcat	2880	
tatatgaaga	ttgggcttga	agtatatatt	tttgcattta	aaagtatcac	ctatcatatt	2940	
ttccactcga	aaattgacat	agtagcattg	aggatactct	gatctagaaa	gccaagtatt	3000	
tgagcaacat	ctatagagat	ctacttttct	cctatgtctc	ctaggctttc	catgataatt	3060	
aggtaataca	tttaagaagg	atatttattt	ctgttttgct	ctattcaaag	aaacggaatg	3120	
ggatagttat	tctgtaaact	aagtttgtat	ataactttat	ttgggtttaa	tttccacaac	3180	
tggtatctgc	aaatattgcc	agcattttag	ccatattttg	ggagaacttg	gtgtttgagg	3240	
teccaggaaa	tgaggtctga	tcaaatgaaa	tgcaagcaca	atttcttaca	gccatttaac	3300	

tttctgttgg	gaggatgaat	taacaaactc	acattgtgca	gtctgcttaa	tccaggcact	3360
tttctttgtg	caggtgtagt	gagtagttac	ttctctccct	tacacagatg	acttgtgaaa	3420
ctcaagctca	ccatcttcag	tgctggcatt	ttactttgcc	actacccaaa	aacaatgtga	3480
gatgtgttca	gtggcctctg	gtactctttg	caggcaagaa	tcaaacaaca	tggggactga	3540
gggaaggatg	gggaagtgta	gccacagttc	ttccaaatgt	aaatactttt	tgtttgttct	3600
agtggtaaaa	tgcaaatgca	atccatattt	gttaggatgg	tcaggtctca	tgagaaatct	3660
atgctatgtg	tccagagctt	ttgaaacaga	gtccattgga	gtgggagtta	gggagtgtag	3720
tggatgccaa	atatgttttt	cttcagtgct	taagagaact	gtttcctgaa	gtccagcttt	3780
gaacataaac	aggggtgtgg	gttgggggag	gagcttagga	caaacctctc	tgatgaaggt	3840
cagcaataga	ctgaagtctt	gactgcatgg	aagaggaaaa	acatcagaac	tgtctgacaa	3900
tggaggggac	agtgagctac	gcacaactgc	cagcggaggt	gaacttgcac	ctgcccaggc	3960
cggatgaaca	tcagcctgca	agaactagtt	gtttgagttg	atttgcagtg	ctctcaatgg	4020
gcaagtgcca	cattttccct	ggcagagatc	tccaaaaatt	taaaacagaa	taataatggc	4080
tatatcgagt	gttttctcag	tattggagaa	atgcttaggt	cctatgatag	cttcgggaca	4140
tctttctgta	attttcctca	attaacgggt	tggtaggggt	aaatcttatg	acacctttcc	4200
accgtcgatt	tgagatcagt	tttaatggtt	aaaatgttta	ctctccttct	gtcaaccctc	4260
acctttttat	ttacacccct	ccctttttt	ctgtacaggg	agagaagaca	tattgactct	4320
gactggacac	cctgattcct	ccaaatatat	ataccactgt	gtattaatct	ttctctcagt	4380
gttttatagg	agtactaaca	tttattgctc	tgtcaataat	gaaaggctcg	atgtaatata	4440
gctgtaattt	actttccata	tgaatacagt	ggctaggttc	ataaaagaga	attgtgtgag	4500
tctgggatta	ccacatctaa	aacattattc	tttaatggga	taatacaatt	cattgagcag	4560
ctaccactta	aaaaacttgc	aggacagtta	gagcctgcat	ttctagttaa	gatggatctt	4620
gtaaatttaa	aattggatta	acattggagt	gctggggtgg	ctgcaataat	ttgggggcta	4680
actccatttg	gtttccaaga	tctcacttct	gcattatctt	tatggctctt	taaaccagcc	4740
acctagccaa	tcaagggcaa	ttcccatctc	atccatcact	caggtctttg	taaagggtgc	4800
agccaagctc	tgcagacttt	tgcaggattg	tctagcctga	gtaccgggct	acttcttaaa	4860
tgccgtcact	cctgctgaga	taaatgcgtc	tttaaaaata	gtctctgtgg	caggtcactg	4920
ggggacaatg	tacagcattc	tggccatcca	cttcttttc	acttcatgtt	ctaccccaag	4980
agactcccga	tgtcggctgt	ggagggttaa	agggatgagg	ctttcctttg	tttagcaaat	5040
ctgttcacag	ttcttgatga	tgtattttat	gatgcccagc	ttggaaatag	ttgctttcca	5100
tagtctcaac	tgtattgtgt	catctcctga	tgctgatttt	tgatcttttg	ttttattaaa	5160
aataattagt	gaaagaggtg	tgcctatctg	tgaagtttgt	agtacatcat	cctgaggtca	5220
tgtaacaagt	aaaccccaac	ccagcgttcc	ctcctacgtt	gtgttagttc	attaaaacta	5280
aataataaaa	ataactgtaa	gaaaacctta	a			5311

<210> SEQ ID NO 144 <211> LENGTH: 2362 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 144

							_
gctgtcagag	ctgaactact	gaaaggaggc	tgtgaaaatt	tcccatcttc	tcattggcca	120	
tcagttgaga	taagatggaa	gactcttaca	aggataggac	ttcactgatg	aagggtgcca	180	
aggacattgc	cagagaggtg	aagaaacaaa	cagtaaagaa	ggtgaatcaa	gctgtggacc	240	
gagcccagga	tgaatacacc	cagaggtcct	acagtcggtt	ccaagatgaa	gaagatgatg	300	
atgactacta	cccggctgga	gaaacctata	atggtgaggc	caacgatgac	gaaggctcaa	360	
gtgaagccac	tgaggggcat	gatgaagatg	atgagatcta	tgagggggag	tatcagggca	420	
tccccagtat	gaaccaagcg	aaggacagca	tegtgteagt	ggggcagccc	aagggcgatg	480	
agtacaagga	ccgacgggag	ctggaatcag	aaaggagagc	tgacgaggaa	gagttagccc	540	
agcagtatga	gctgataatc	caagaatgcg	gtcatggtcg	ttttcagtgg	gcccttttct	600	
tegteetggg	catggctctt	atggcagacg	gtgtagaggt	gtttgtcgtt	ggcttcgtgt	660	
tacccagtgc	tgagacagac	ctctgcatcc	caaattcagg	atctggatgg	ctaggcagca	720	
tagtgtacct	cgggatgatg	gtgggggcgt	tettetgggg	aggactggca	gacaaagtgg	780	
gaaggaaaca	gtctcttctg	atttgcatgt	ctgtcaacgg	attctttgcc	ttcctttctt	840	
catttgtcca	aggttatggc	ttctttctct	tctgtcgctt	actttctgga	ttcgggattg	900	
gaggagccat	acccactgtg	ttctcgtact	ttgctgaagt	cctggcccgg	gaaaagcggg	960	
gcgaacactt	gagetggete	tgcatgttct	ggatgatcgg	tggcatctac	gcctctgcca	1020	
tggcctgggc	catcatcccg	cactacgggt	ggagcttcag	catgggatcg	gcctaccagt	1080	
ttcacagttg	gcgtgtgttt	gtcatcgtct	gtgcactccc	ctgtgtctcc	tccgtggtgg	1140	
ccctcacatt	catgcctgaa	agcccacgat	tcttgttgga	ggttggaaaa	catgatgaag	1200	
cttggatgat	tctgaagtta	attcatgaca	ccaacatgag	agcccggggt	cagcctgaga	1260	
aggtcttcac	ggtaaacaaa	ataaaaactc	ctaaacaaat	agatgagctg	attgaaattg	1320	
agagtgacac	aggaacatgg	tataggaggt	gttttgttcg	gatccgcacc	gagctgtacg	1380	
gaatttggtt	gacttttatg	agatgtttca	actacccagt	cagggataat	acaataaagc	1440	
ttacaattgt	ttggttcacc	ctgtcctttg	ggtactatgg	attatccgtt	tggttccctg	1500	
atgtcattaa	acctctgcag	tccgatgaat	atgcattgct	aaccagaaat	gtggagagag	1560	
ataaatatgc	aaatttcact	attaacttta	caatggaaaa	tcagattcat	actggaatgg	1620	
aatacgacaa	tggcagattc	ataggggtca	agttcaaatc	tgtaactttc	aaagactctg	1680	
tttttaagtc	ctgcaccttt	gaggatgtaa	cttcagtgaa	cacctacttc	aagaactgca	1740	
catttattga	cactgttttt	gacaacacag	attttgagcc	atataaattc	attgacagtg	1800	
aatttaaaaa	ctgctcgttt	tttcacaaca	agacgggatg	tcagattacc	tttgatgatg	1860	
actatagtgc	ctactggatt	tattttgtca	actttctggg	gacattggca	gtattgccag	1920	
ggaacattgt	gtctgctctg	ctgatggaca	gaattgggcg	cttaacaatg	ctaggtggct	1980	
ctatggtgct	ttcggggatc	agctgtttct	tcctttggtt	cggcaccagt	gaatccatga	2040	
tgataggcat	gctgtgtctg	tacaatggat	tgaccatctc	agcctggaac	tctcttgacg	2100	
tggtcactgt	ggaactgtac	cccacagacc	ggagggcaac	aggctttggc	ttcttaaatg	2160	
cgctatgcaa	ggcagcagcc	gtcctgggaa	acttaatatt	tggctctctg	gtcagcatca	2220	
ccaaatcaat	ccccatcctg	ctggcttcta	ctgtgctcgt	gtgtggagga	ctcgttgggc	2280	
		acccaggttc				2340	
	cctcctgccc					2362	
- 3-3-0000		- 9				-	

<210> SEQ ID NO 145

<211> LENGTH: 2053 <212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 145

catctttgat gagggcagag ctcacgttgc attgaagacg aaacctcggg gaggtcaggc 60 getgtettte etteeeteee tgeteggegg etceaceaea gttgeaacet geagaggeee 120 ggagaacaca accetecega gaageecagg tecagageca aaccegteae tgaceececa 180 geocaggege ecagecacte eccacegeta ceatggeega agaegeagae atgegeaatg 240 agctggagga gatgcagcga agggctgacc agttggctga tgagtcgctg gaaagcaccc gtcgtatgct gcaactggtt gaagagagta aagatgctgg tatcaggact ttggttatgt tggatgaaca aggagaacaa ctcgatcgtg tcgaagaagg catgaaccat atcaaccaag 420 acatgaagga ggctgagaaa aatttaaaag atttagggaa atgctgtggc cttttcatat 480 gtccttgtaa caagcttaaa tcaagtgatg cttacaaaaa agcctggggc aataatcagg 540 acggagtggt ggccagccag cctgctcgtg tagtggacga acgggagcag atggccatca 600 660 tagagcaggt gagcggcatc atcgggaacc tccgtcacat ggccctggat atgggcaatg 720 agatcgatac acagaatcgc cagatcgaca ggatcatgga gaaggctgat tccaacaaaa 780 ccagaattga tgaggccaac caacgtgcaa caaagatgct gggaagtggt taagtgtgcc 840 caccegtgtt ctcctccaaa tgctgtcggg caagatagct ccttcatgct tttctcatgg 900 tattatctag taggtctgca cacataacac acatcagtcc acccccattg tgaatgttgt 960 cetgtgtcat etgtcagett eccaacaata etttgtgtet tttgttetet ettggtetet 1020 ttctttccaa aggttgtaca tagtggtcat ttggtggctc taactccttg atgtcttgag 1080 tttcattttt cattttctct cctcggtggc atttgctgaa taacaacaat ttaggaatgc 1140 tcaatgtgct gttgattctt tcaatccaca gtattgttct tgtaaaactg tgacattcca 1200 cagagttact gccacggtcc tttgagtgtc aggctctgaa tctctcaaaa tgtgccgtct 1260 ttggttcctc atggctgtta tctgtcttta tgatttcatg attagacaat gtggaattac 1320 ataacaggca ttgcactaaa agtgatgtga tttatgcatt tatgcatgag aactaaatag 1380 atttttagat tcctacttaa acaaaaactt tccatgacag tagcatactg atgagacaac 1440 acacacaca acaaaacaac agcaacaaca acagaacaac aacaaagcat gctcagtatt 1500 gagacactgt caagattaag ttataccagc aaaagtgcag tagtgtcact tttttcctgt 1560 caatatatag agacttctaa atcataatca tcctttttta aaaaaaagaa ttttaaaaaa 1620 gatggatttg acacactcac catttaatca tttccagcaa aatatatgtt tggctgaaat 1680 tatgtcaaat ggatgtaata tagggtttgt ttgctgcttt tgatggctac gttttggaga 1740 gagcaatctt gctgtgaaac agtgtggatg taaattttat aaggctgact cttactaacc 1800 accatttccc ctgtggtttg ttatcagtac aattctttgt tgcttaatct agagctatgc 1860 1920 acaccaaatt gctgagatgt ttagtagctg ataaagaaac cttttaaaaa aataatataa atgaatgaaa tataaactgt gagataaata tcattatagc atgtaatatt aaattcctcc 1980 tgtctcctct gtcagtttgt gaagtgattg acattttgta gctagtttaa aattattaaa 2040 2053 aattataqac tcc

-continued

<211> LENGTH: 2053

<212> TYPE: DNA

<213 > ORGANISM: Homo sapiens

<400> SEQUENCE: 146

catctttgat gagggcagag ctcacgttgc attgaagacg aaacctcggg gaggtcaggc 60 getgtettte etteeeteee tgeteggegg etceaceaea gttgcaacet geagaggeee 120 ggagaacaca accetecega gaageecagg tecagageea aaccegteae tgaceececa 180 geccaggege ceagecaste eccacegeta ceatggeega agaegeagae atgegeaatg 240 agctggagga gatgcagcga agggctgacc agttggctga tgagtcgctg gaaagcaccc 300 gtcgtatgct gcaactggtt gaagagagta aagatgctgg tatcaggact ttggttatgt tggatgaaca aggagaacaa ctggaacgca ttgaggaagg gatggaccaa atcaataagg acatgaaaga agcagaaaag aatttgacgg acctaggaaa attctgcggg ctttgtgtgt 480 qtccctqtaa caaqcttaaa tcaaqtqatq cttacaaaaa aqcctqqqqc aataatcaqq 540 acqqaqtqqt qqccaqccaq cctqctcqtq taqtqqacqa acqqqaqcaq atqqccatca 600 660 tagagcaggt gagcggcatc atcgggaacc tccgtcacat ggccctggat atgggcaatg 720 agatcgatac acagaatcgc cagatcgaca ggatcatgga gaaggctgat tccaacaaaa 780 ccaqaattqa tqaqqccaac caacqtqcaa caaaqatqct qqqaaqtqqt taaqtqtqcc 840 caccegtgtt ctcctccaaa tgctgtcggg caagatagct ccttcatgct tttctcatgg 900 tattatctag taggtctgca cacataacac acatcagtcc acccccattg tgaatgttgt 960 cctgtgtcat ctgtcagctt cccaacaata ctttgtgtct tttgttctct cttggtctct 1020 ttctttccaa aggttgtaca tagtggtcat ttggtggctc taactccttg atgtcttgag 1080 tttcattttt cattttctct cctcggtggc atttgctgaa taacaacaat ttaggaatgc 1140 tcaatgtget gttgattett teaateeaca gtattgttet tgtaaaactg tgacatteea 1200 cagagttact gccacggtcc tttgagtgtc aggctctgaa tctctcaaaa tgtgccgtct 1260 ttggttcctc atggctgtta tctgtcttta tgatttcatg attagacaat gtggaattac 1320 ataacaggca ttgcactaaa agtgatgtga tttatgcatt tatgcatgag aactaaatag 1380 atttttagat tcctacttaa acaaaaactt tccatgacag tagcatactg atgagacaac 1440 1500 acacacaca acaaaacaac agcaacaaca acagaacaac aacaaagcat gctcagtatt gagacactgt caagattaag ttataccagc aaaagtgcag tagtgtcact tttttcctgt 1560 caatatatag agacttctaa atcataatca tcctttttta aaaaaaagaa ttttaaaaaa 1620 gatggatttg acacactcac catttaatca tttccagcaa aatatatgtt tggctgaaat tatgtcaaat ggatgtaata tagggtttgt ttgctgcttt tgatggctac gttttggaga 1740 qaqcaatctt qctqtqaaac aqtqtqqatq taaattttat aaqqctqact cttactaacc 1800 accatttccc ctgtggtttg ttatcagtac aattctttgt tgcttaatct agagctatgc 1860 acaccaaatt gctgagatgt ttagtagctg ataaagaaac cttttaaaaa aataatataa atgaatgaaa tataaactgt gagataaata tcattatagc atgtaatatt aaattcctcc 1980 tgtctcctct gtcagtttgt gaagtgattg acattttgta gctagtttaa aattattaaa 2040 2053 aattatagac tcc

-continued

```
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxyl-terminus
      at the P1 residue of the scissile bond of the BoNT/A
      cleavage site
<400> SEQUENCE: 147
Asp Glu Ala Asn Gln
<210> SEQ ID NO 148
<211> LENGTH: 6
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNAP-25 antigen having a free carboxyl-terminus
      at the P1 residue of the scissile bond of the BoNT/A
      cleavage site
<400> SEQUENCE: 148
Ile Asp Glu Ala Asn Gln
```

25

What is claimed:

- 1. A method of detecting anti-BoNT/A enzymatic activity neutralizing antibodies in a mammal comprising the steps of:
 - a. obtaining a test sample from a mammal, wherein the mammal is being tested for the presence or absence of an anti-BoNT/A neutralizing antibodies and wherein the test sample is a blood or serum sample from the mammal;
 - b. adding a known quantity of BoNT/A to the test sample;
 - c. contacting a cell from an established cell line expressing SNAP-25 with the test sample, wherein the cell from the established cell line is susceptible to BoNT/A intoxication;
 - d. isolating from the cell a SNAP-25 cleavage product by BoNT/A having a carboxyl terminus glutamine from the BoNT/A cleavage site scissile bond;
 - e. contacting the SNAP-25 cleavage product or fragment with an anti-SNAP-25 antibody linked to a solid phase support, wherein the anti-SNAP-25 antibody specifically binds to an epitope of the BoNT/A cleavage product of SNAP-25 consisting of the amino acid sequence of SEQ ID NO:38, and wherein the anti-SNAP-25antibody comprises a heavy chain variable region comprising the amino acid sequences of at least one of SEQ ID NOs: 93, 96, and 100 and a light chain variable region comprising CDRs comprising the amino acid sequences of at least one of SEQ ID NOs: 105, 110 and 115; or a heavy chain variable region comprising complementary determining regions (CDRs) comprising the amino acid

- sequences of at least one of SEQ ID NOs: 95, 99, and 101 and a light chain variable region comprising CDRs comprising the amino acid sequences of at least one of SEQ ID NOs: 103, 108 and 113;
- f. detecting the presence of an antibody-antigen complex comprising the anti-SNAP-25 antibody and the SNAP-25 cleavage product;
- g. performing steps b-f with a negative control sample instead of a test sample, wherein the negative control sample comprises the known quantity of BoNT/A and a serum known not to contain anti-BoNT/A enzymatic activity neutralizing antibodies;
- h. comparing the amount of antibody-antigen complex detected in step f relative to the amount of antibodyantigen complex detected in the negative control sample; and
- determining the presence of anti-BoNT/A enzymatic activity neutralizing antibodies in the test sample when the amount of antibody-antigen complex detected in step f is less than the amount of antibody-antigen complex detected in the negative control sample.
- 2. The method of claim 1, wherein the quantity of known BoNT/A is 10 pM.
- 3. The method of claim 1, wherein the detecting the presence of an antibody-antigen complex is through the use of a sandwich immunoassay.
- **4**. The method of claim **3**, wherein the sandwich immunoassay comprises an electrochemiluniescense or chemiluminescense substrate.

* * * * *